
ATTITUDE CONTROL USING REACTION

WHEELS

MAJOR PROJECT REPORT

Submitted in partial fulfilment of the requirements for the course

Major Project II (ME499)

By

NITHISH K GNANI

HARI SHANKAR S

DENNIS JOSHY

B SURESH

DEPARTMENT OF MECHANICAL ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY

KARNATAKA, SURATHKAL, MANGALORE – 575025

26th April, 2017

i

ACKNOWLEDGEMENTS

The team would like to thank our project guide Professor Prasad Krishna, Department

of Mechanical Engineering NITK, for all the guidance and mentorship provided during

the course of the project. His valuable advice helped us formulate the problem statement

and pointed us in the right direction. From the initial literature survey to the final design,

fabrication testing and procurement of the necessary hardware, Professor Prasad

Krishna has been a guiding hand for us at all times.

The team also thanks Professor K V Gangadharan, Head and Coordinator of Center for

Systems Design and Dr K R Guruprasad, Assistant professor, Department of

Mechanical Engineering for all their valuable inputs and the insights they imparted to

us on how to approach the control engineering aspect of the problem statement.

The contributions of Ms Soumya, research scholar of the robotics laboratory, in

advising us about the hardware, the intricacies related to the control algorithms and the

associated literature is duly acknowledged. We also thank all the research scholars of

the tribology laboratory for teaching us how to use their equipment, permitting our

project to move forward. We also thank Mr Kathik Samthani for his contribution in

tuning our control system.

ii

ABSTRACT

Space systems involve multiple scenarios where system parameters will fluctuate in

real time. The objective is to implement a simple adaptive control algorithm, MRAC

using the MIT rule for yaw control of a suspended body using a reaction wheel and

compare it with PID control. The direct implementation of this technique to such a

system was not found in literature.

A realistic model of the reaction wheel system was designed using SolidWorks. The

model was exported to SimMechanics. PID and MRAC were implemented in Simulink

environment. A physical model, closely resembling the CAD model was fabricated

using open source components. PID control was successfully implemented. Further,

MRAC implemented in Simulink was wirelessly interfaced in real time to the physical

model.

The results depict that the control system works almost as good as PID in terms of

system response and simultaneously provides the much needed adaptive capability in

such environments.

Keywords: reaction wheel, PID, MRAC, yaw control

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... i

ABSTRACT .. ii

TABLE OF CONTENTS .. iii

LIST OF FIGURES .. vi

LIST OF TABLES ... viii

1 INTRODUCTION.. 1

1.1 Reaction Wheel .. 1

1.2 One dimensional inverted pendulum ... 2

2 SIMULATION OF 1D INVERTED PENDULUM ... 4

2.1 Assumptions ... 4

2.2 CAD model of the 1D inverted pendulum ... 4

2.3 1D inverted pendulum system in SimMechanics ... 5

2.4 Motor and Gearbox subsystem .. 5

2.5 The pendulum subsystem ... 6

2.6 The controller subsystem ... 7

3 ONE DIMENSIONAL INVERTED PENDULUM .. 8

3.1 Structure of the pendulum ... 9

3.2 Circuitry ... 10

4 PROOF OF CONCEPT OF YAW CONTROL IN SUSPENDED BODY ... 12

5 COMPUTER AIDED MODEL AND DESIGN .. 15

5.1 Design based on initial crude model .. 15

5.2 New design... 16

5.3 Chassis ... 17

5.4 Motor assembly .. 18

5.5 CPU .. 18

iv

6 ADAPTIVE CONTROL ... 20

6.1 Methods of implementation of Model Reference Adaptive Control (MRAC) 21

7 SIMULATION OF ATTITUDE CONTROL .. 24

7.1 The Control System Diagram .. 24

7.2 Input conditioning block .. 25

7.3 Controlled Reference model ... 25

7.4 Adaptive Controller .. 27

7.5 Controlled Satellite model .. 28

7.6 The Motor Sub-system ... 29

8 MOTOR CHARACTERIZATION .. 31

9 PHYSICAL MODEL ... 36

9.1 Fabrication of the chassis ... 37

9.2 Circuitry ... 38

9.2.1 L29810 Motor Driver .. 38

9.2.2 DC Motor .. 39

9.2.3 11.1V Li-Po Battery .. 39

9.2.4 Sensors .. 40

9.2.5 ESP 8266 – Node MCU .. 41

10 IMPLEMENTATION ON HARDWARE ... 42

10.1 Implementation of PID ... 42

10.1.1 Calculation for the input to PID ... 42

10.1.2 Calculating integral and derivative terms .. 42

Capping of integral term .. 43

Calculating PID .. 43

10.2 Reading from Magnetometer .. 43

10.3 Online Tuning of PID Parameters Using Blynk ... 44

v

10.4 WiFi Communication With Smartphone .. 45

10.5 Wifi Communication with Simulink ... 46

11 RESULTS ... 48

12 FUTURE SCOPE OF WORK .. 51

LIST OF APPENDICES ... 52

Appendix – A ... 52

Appendix - B .. 53

Appendix – C ... 53

Appendix - D.. 58

REFERENCES ... 61

vi

LIST OF FIGURES

Figure 1.1 Reaction Wheel .. 2

Figure 2.1 CAD model of the 1D inverted pendulum ... 4

Figure 2.2 SimMechanics Block diagram of the 1D inverted pendulum system 5

Figure 2.3 SimMechanics block diagram of motor and gear box subsystem 6

Figure 2.4 SimMechanics block diagram of Pendulum subsystem 7

Figure 2.5 SimMechanics block diagram of Controller subsystem 7

Figure 3.1 One dimensional inverted pendulum .. 9

Figure 4.1 Suspended body for yaw control .. 12

Figure 5.1 Components of the satellite .. 15

Figure 5.2 First model .. 16

Figure 5.3 New model.. 16

Figure 5.4 The Chassis ... 17

Figure 5.5 Components of the motor ... 18

Figure 5.6 The CPU Arrangement ... 18

Figure 6.1 Block diagram of MRAC ... 20

Figure 7.1 Complete Simulink Control System Diagram .. 24

Figure 7.2 Input conditioning block... 25

Figure 7.3 PID controlled reference system .. 25

Figure 7.4 Free body diagram of chassis and reaction wheel in dynamic equilibrium 26

Figure 7.5 First layer of sub-system .. 27

Figure 7.6 Sub-system for the time-derivative of gains ... 28

Figure 7.7 Controlled DC motor sub-system ... 30

Figure 8.1 Setup for measurement of armature resistance ... 32

Figure 8.2 Circuit for measurement of inductance .. 33

Figure 8.3 Setup fot measurement of inductance... 33

Figure 8.4 Waveform obtained .. 33

Figure 8.5 RPM and Torque Curves .. 34

Figure 9.1 Working model ... 36

Figure 9.2 Individual components of the chassis ... 37

Figure 9.3 Assembled chassis .. 37

Figure 9.4 Circuit Board .. 38

vii

Figure 9.5 L29810 Motor Driver ... 39

Figure 9.6 DC Motor.. 39

Figure 9.7 Battery .. 40

Figure 9.8 Sensors Used .. 40

Figure 9.9 NodeMCU pin definition diagram.. 41

Figure 10.1 Interface on the Blynk App .. 44

Figure 10.2 HyperIMU App Interface ... 46

Figure 10.3 Simulink block diagram ... 47

Figure 11.1 Graphs of Setting Time and Rise Time vs Adaptation Gain 48

Figure 11.2 Steady State Error vs Adaptation Gain ... 48

Figure 11.3 Response of MRAC for different Gamma values 49

Figure 11.4 System responses for Gamma = 1, gamma = 2 .. 50

Figure 11.5 System Responses for Gamma = 3, Gamma = 4 50

viii

LIST OF TABLES

Table 3.1 - Masses of pendulum components .. 10

Table 3.2 - Dimensions of Pendulum Components ... 10

Table 3.3 - Measured Values of Current During Motor Operation 11

Table 8.1 Observations for measurement of armature resistance 32

1

1 INTRODUCTION

The attitude control of a satellite is an important part of most missions in the space. Not

only a suitable control methodology, but also appropriate actuators should be applied

in order to help to achieve the goal of the mission and satisfy the constraints, e.g. solar

radiation [K.D. Kumar, et al], reaction wheels [L.H. Geng, et al], magnetic torque rod

[M. Lovera, et al], thrusters [M.J. Sidi, et al], control moment gyro [B. Bohari, el al],

etc. To stabilize the system with uncertainties, different methods have been proposed

over the years. It is a well-known fact that PID controllers have dominated industrial

control applications even in aerospace engineering [K.D. Kumar, et al], although there

has been considerable interest to research about the implementation of advanced

controllers. They are straightforward to use, as almost everyone with some basic

knowledge in control engineering may be able to employ it satisfactorily. The fixed

gain PID controller cannot perfectly stabilize non- linear systems with uncertainties in

terms of the model and parameters. To enhance the performance of the PID controller,

a simple adaptive control algorithm, Model Reference Adaptive Control (MRAC) using

the MIT rule for yaw control of a suspended body using a reaction wheel was

implemented

1.1 Reaction Wheel

It is common knowledge that the tail rotor of a helicopter is used to stabilize the body

which would otherwise spin out of control. The conservation of angular momentum

requires that if the rotor rotates in one direction with a certain amount of angular

momentum, the body should rotate in the opposite direction with the same angular

momentum.

A reaction wheel functions on the same principle. An unstable system, like an inverted

pendulum for instance, tends to fall under the torque exerted by gravity. If a reaction

wheel is correctly positioned on the pendulum, the changes in the angular momentum

of the reaction wheel will apply a counter-torque that causes the pendulum to rotate in

the opposite direction. Using efficient control strategies, the inverted pendulum can be

stabilized.

2

A reaction wheel, also called as a momentum wheel, is a type of flywheel used for

orientation control of bodies. They are common in satellites. Orientation control is

accomplished by equipping the body with an electric motor attached to a flywheel

which, when its rotation speed is changed, causes the body to begin to counter-rotate

proportionately through conservation of angular momentum [Muehlebach, et al,

2012][Mohanarajah, et al, 2012][Muehlebach, et al].

Figure 1.1 Reaction Wheel

There are several parameters to be kept in mind while designing a reaction wheel. Some

of these include:

1. Moment of inertia

2. Radius

3. Geometry (number of spokes)

In usual practice, the reaction wheel assumes the shape of a flywheel to concentrate the

mass at the rim. The Radius is an important factor when space becomes a constraint in

small CubeSats [Nudehi, et al, 2008].

1.2 One dimensional inverted pendulum

The inverted pendulum project is a standard problem statement used to study new

control algorithms, control mechanisms etc. For example, the cart model simulates a

pendulum that balances itself using a sliding connector. Another technique is to use

3

gyroscopic moments to stabilize the pendulum. It is a simple platform to observe and

verify all such techniques.

Using the concepts explained in the preceding section, the pendulum will be balanced

using reaction wheels. The restoring moment of the reaction wheel on the motor will

balance the unstable inverted pendulum.

4

2 SIMULATION OF 1D INVERTED PENDULUM

2.1 Assumptions

Some of the assumptions made for simulating the inverted pendulum include:

1. Rigid body components and state of pure bending

2. Idealized motor and gearbox

3. No air resistance

4. Linearization around 180 degrees

5. Neglect vibrations of the body

2.2 CAD model of the 1D inverted pendulum

A model of the pendulum was designed in SolidWorks. Each part of the model was

designed and later assembled with the required constraints. The parts include base,

revolute pin, pendulum body, motor and reaction wheel. Coincident and concentric

constraints were applied between the base and the revolute pin which holds the

pendulum body. The revolute pin, the pendulum body and the motor were rigidly

constrained and hence function as a single unit. Coincident and concentric constraints

were applied between the reaction wheel and motor. The CAD model of the system was

exported using a second generation SimMechanics link – to generate an xml file.

Figure 2.1 CAD model of the 1D inverted pendulum

5

2.3 1D inverted pendulum system in SimMechanics

On importing the model into Simulink, it made the necessary initializations such as the

environment blocks. The motor and the gear box subsystems were obtained from an

online source.

Second generation SimMechanics models are highly versatile. It permits assigning

internal mechanics such as spring stiffness and damping parameters. It also has options

for adding sensing ports and receiving signals as inputs.

Figure 2.2 SimMechanics Block diagram of the 1D inverted pendulum system

2.4 Motor and Gearbox subsystem

Next, the motor and gearbox were modelled using an online source. The circuit uses a

controlled voltage source, a dc motor coupled with a gearbox. Additional components

representing inertia and friction were added to make the system more realistic. The

motor had options to accept armature resistance, inductance, inertia and the damping.

As the motor had not been characterized and this data was not available in the online

catalogues, dummy values were used in place of the actual ones.

6

The blue circuit represents an electrical circuit. The DC motor block transforms the

current to torque. The ideal torque sensor reads the torque value and displays it on a

scope block.

Figure 2.3 SimMechanics block diagram of motor and gear box subsystem

2.5 The pendulum subsystem

The torque from the motor is transmitted to the reaction wheel on top of the pendulum.

The moment applied by the reaction wheel results in a case of pure bending. There are

no shear forces generated along the length of the pendulum body. This means that the

moment acting along the pendulum body is the same regardless of the position of the

motor. The moment applied by the reaction wheel is sensed and transferred to the

revolute joint at the base of the pendulum.

7

Figure 2.4 SimMechanics block diagram of Pendulum subsystem

2.6 The controller subsystem

The PID controller implemented was also reduced to a subsystem:

Figure 2.5 SimMechanics block diagram of Controller subsystem

Finally Gaussian noise of 0 mean and 0.001 variance was added to the motor input to

factor in ambient and environmental disturbances that influences the inverted

pendulum.

8

3 ONE DIMENSIONAL INVERTED PENDULUM

For slightly more than a century, inverted pendulum systems have been an

indispensable part of the controls community. They have been widely used to test,

demonstrate and benchmark new control concepts and theories.

Although most inverted pendulums are implemented with a mobile base (a cart and

wheel setup), in our model, the pendulum is connected to a base fixed to the ground. It

is balances itself using the torque provided by a reaction wheel calculated by a PID

implementation on a micro-controller.

In order to demonstrate the ability of the reaction wheel for attitude control applications,

the performance of the reaction wheel for an inverted pendulum fixed to the ground via

a revolute joint, was studied. A physical model of the CAD model in preceding section

was developed and the associated circuitry – including the microcontroller, motor

driver, DC power system and the wiring was implemented.

The details of each component used for the assembly of the model are explained in the

next few subsections. Although the paper suggests earlier that a PID control was used,

this state was arrived at after testing with PD, PI alternatives. The pendulum was able

to balance for a short period of time, but further tuning is required to increase its range

of operations and stability.

Albeit, PID is the most popular control strategy that is used for CubeSat technology,

other control strategies such LQR (Linear Quadratic Regulator) are also found to be

effective as demonstrated by [Mohanarajah, et al, 2012] in project Cubli. The study of

the reaction performance with more complicated control strategies will be an interesting

area of research.

9

3.1 Structure of the pendulum

Figure 3.1 One dimensional inverted pendulum

The revolute joint of the pendulum was mounted on a sheet of acrylic. The Arduino

board and the motor driver is screwed onto the holes made in the acrylic sheet. A roller

bearing was press fit into the revolute joint pin of the pendulum. The diameter of the

pipe was expanded by heating and the bearing was firmly fit into it. A circular clamp

was out around the bearing to ensure that the arrangement remains fastened. A bolt was

passed through the hole of the bearing and the end of the bolt was fastened onto the

acrylic sheet.

The MPU6050 - six axis IMU (Inertial Measurement Unit) was stuck to the point of the

revolute joint. The counter-weights were added to the lower half of the pendulum body

and the motor fastened to the top of the upper half using zip ties and tape. The two

halves were connected together using a T – junction. Finally, the reaction wheel was

attached to the motor shaft.

10

Table 3.1 - Masses of pendulum components

Sl No. Element Mass

(g)

1. Upper half of pendulum body 60

2. Lower half of pendulum body 50

3. Motor 186

4. Counter-weight 246

5. Reaction wheel 40

Table 3.2 - Dimensions of Pendulum Components

Sl No. Pendulum part Dimensions (cm)

1 Upper half 52

2 Lower half 29

3 Pin of revolute joint 6

3.2 Circuitry

The Reaction wheel based inverted pendulum was built in various steps. Several

different motors and reaction wheel setups were tried and tested. The image shown

above is the first model of the inverted pendulum. The electronic components used were

the open source Arduino Uno development board and the MPU6050 – three axis

accelerometer and the three axis gyroscope. A simple ball bearing was used as the

reaction wheel in this model. Later on, counter-weights were added (as opposed to

positioning the Arduino board there as shown in the first model). The dc motor we tried

was a BO – Battery Operated motor (found in toy cars and the like). An L293D motor

driver was used to drive the motor. The PID control was implemented in the

development board with appropriate thresholds and this calculated the required

PWM(Pulse Width Modulation) values depending on the values received from the

11

motion processing unit. Although, the control system was working well in changing

directions and trying to stabilize the pendulum: the torque generated was simply not

enough to balance the pendulum.

So, a high torque motor that ran at nearly 21000 rpm at no load condition was acquired.

However, the motor driver L293D could not handle the amounts of current drawn by

this motor. Another option was to use BLDC (BrushLess Direct Control) motors. But

we were unable to find to a driver that could handle the required current and at the same

time switch directions quickly. The motor driver RKI-1341 was rated to run a peak

current up to 20 A for up to one minute.

This was a cost-effective solution to the issue of finding the right motor controller. The

motor driver and the motor circuit is powered by a 12 volt DC power supply. Using this

motor driver, the motor was able to run without any problems.

Some of the highest values of current were noted during starting and direction reversal

from the extreme speeds. The steady state current noticed was between 2.87A and 3 A.

Table 3.3 - Measured Values of Current During Motor Operation

No. Motor event Current (A)

1. Start up 11

2. Change of directions 15.5

3. Steady State 3

4. Brake condition 0.5

12

4 PROOF OF CONCEPT OF YAW CONTROL IN SUSPENDED BODY

Figure 4.1 Suspended body for yaw control

Satellites in space perform attitude control using reaction wheels. It uses one reaction

wheel for each of the three axes. Unlike an inverted pendulum, this is a neutral

equilibrium system.

The yaw motion of a satellite is simulated using a suspended body. A reaction wheel is

used to control the yaw. There is a micro controller on board which implements PI

control. It takes the yaw of the structure as an input from the magnetometer and the

output of the controller goes to the motor driver which in turn drives the motor with

reaction wheel attached to the shaft [Meyer, et al, 2009] [Ismail and Varatharajoo].

13

A Bluetooth module is used to receive information from a cell phone. The cell phone

feeds the required reference orientation. The error is calculated as the difference

between these two values and fed into the controller. By sending the yaw angle from

the phone to the structure, the structure can mirror the smartphone’s orientation. With

proper tuning this structure can compensate for any external disturbances. If you offset

the structure by any angle it will turn back to the reference angle.

The list of components involved in the construction of the model includes:

1. DC (Direct Current) 12-volt motor

2. Reaction wheel

3. L293D motor driver

4. Arduino Uno

5. HMC5883L – 3 axis digital magnetometer

6. HC05 – Bluetooth module

7. Acrylate boards and strings for fabrication

8. 1500mAh Lithium Polymer (Li-Po) 12-volt battery

9. Smartphone with magnetometer and Bluetooth, with Arduino 2.0 application

installed

The various subsystems that went to making this model is as follows:

• Mechanical subsystem: The frame was fabricated from acrylic and wood. The

above mentioned components were arranged so that the centre of gravity of the

system was made close to the line of suspension.

• Electronics subsystem: The battery on board directly powers the L293D motor

driver. The voltage regulator on the driver supplies power of 5 volts to the

Arduino. The I2C (Inter Integrated Circuit) communication protocol was used

to read the sensor values from the magnetometer to the Arduino. The

smartphone sent its orientation with respect to north to the paired Bluetooth

module using the Arduino 2.0 application at a sampling time of 100ms. This

data was received by the Bluetooth module and sent to the microcontroller using

UART (Universal Asynchronous Receiver Transmitter) protocol (serial

communication). A voltage divider circuit was used to convert the Bluetooth

14

logic level from 3.3 volts to 5 volts. PWM signal was sent to the motor driver

to drive the motor.

• Control subsystem: PI controller was implemented on the microcontroller. The

input to the control algorithm was in degrees of deviation from the set points.

The controller output was given to the motor driver as PWM signal. The PI

output was constrained to remain in the range from -255 to 255. The Integral

term of the PI was also constrained to be in the range of -100 to 100.

15

5 COMPUTER AIDED MODEL AND DESIGN

The suspended body (satellite) is modelled and designed in SolidWorks 2013. The

model was made using a combination of assemblies which in turn were made of

subassemblies and parts. It was taken into account that the design could be easily

fabricated using the materials and component that are easily available to the team. The

parts used in the final assembly are given in the figure below.

Figure 5.1 Components of the satellite

5.1 Design based on initial crude model

The model shown is the minimalistic one we had visualized initially for the

demonstration of attitude control using reaction wheels. This was based on the crude

suspended body model that we had built in the previous semester. SolidWorks 2013

was used.

Satellite

Chassis

Top &
bottom
plates

Side plates
type 1 & 2

Motor
assembly

Outer
casing

Armat
ure

End
gear

Reaction
Wheel

CPU

Battery
Micropr
ocessor

Motor
driver &
sensors

16

Figure 5.2 First model

5.2 New design

We then decided that the simplistic design was not going to be sufficient to house all

the components that we planned to use for the model. Another model was designed in

SolidWorks. All the components that we were going to use were included as parts and

the final model was assembled as shown.

Figure 5.3 New model

17

5.3 Chassis

In the new model, interlocking type plates were designed for the chassis. This was done

because it would be easier to disassemble and reassemble the interior as and when it

was required. During the course of our work, the battery would need to be recharged,

adjustments may need to be made to the motor or reaction wheel, connections may need

to be changed, working code may need to be updated multiple times. These were the

reasons the interlocking type plates were used.

Figure 5.4 The Chassis

18

5.4 Motor assembly

Figure 5.5 Components of the motor

5.5 CPU

Figure 5.6 The CPU Arrangement

19

The battery, ESP, motor driver, the two sensors were all modelled individually if the

original source was not available officially and were included in the CAD model.

Various arrangements were tried such that the centre of gravity was coinciding with the

geometric axis.

20

6 ADAPTIVE CONTROL

Fixed gain controllers are designed to function within a certain range of operations of

the plant. The constants that appear in the control law are tuned manually depending on

desired response. For instance, in a Proportional-Integral-Derivative (PID) control, the

integral constant is tuned to minimize steady state error.

After world war two and at the advent of the space race, there was significant interest

in the development of sturdy and reliable autopilot systems. This was particularly

important in dynamical systems where the system parameters (especially mass)

continuously changes such as a rocket, space-vehicles that need to eject components

often or even damaged aircrafts.

Adaptive Control was designed with this goal in mind. [Link1] shows how a model

remote controlled (RC) aircraft continues to maintain its trajectory by varying the

output of its motor. The Model Reference Adaptive Control was one such control

algorithm that was designed to accomplish this. The control law of this algorithm

contains constants that are tuned automatically depending on the solution to an

optimization problem []. A desired reference model is used and the output of the

physical system is made to emulate the reference model`s response by tuning the gains

in a manner described above.

Figure 6.1 Block diagram of MRAC

Apart from autopilot control systems, Adaptive control is currently being applied to a

wide spectrum of applications including automotive, aerospace, process industries, bio-

21

medical applications etc. [Kilic et al. 2016], explains the use of MRAC for the speed of

induction motors, where a radial basis function neural. [Sami et al. 2016], presents the

use of an L1 adaptive control design process for automatic tuning of control parameters

for the desired performance and robustness. [Kyaw and Gavrilov 2016] describes a fault

tolerant sliding mode attitude control for flexible space-crafts, while [Han et. al. 2015]

explains the use of adaptive control for attitude control during actuator failure.

[Harmonie et al. 2017] speaks of using robust adaptive attitude control during payload

deployment for microsatellites. The Luzi adaptive control algorithm is also described

in this work.

MRAC has been applied for unconventional applications like impedance control for

human robot interaction [Bakur et. al. 2016]. Further, [Jaeyoung et al. 2017] emphasizes

the applicability of MRAC in thermal management of automotive fuel cells. Vector

controlled induction motor applications using MRAC with rotor flux and back EMF

methods have explained in [Munshi and Choudhuri 2016]. Taking a step further, in

[Wei and Wang 2015] the application of MRAC for fractional order linear systems have

been explained. Another interesting study in ‘road following applications’ between

vehicles have been studied in [Hassan and Sudhin 2014] using MRAC. MRAC is also

finding application in cancer treatment as explained in [Salami and Salamci 2016].

6.1 Methods of implementation of Model Reference Adaptive Control (MRAC)

There are multiple ways to implement the Model Reference Adaptive Control. The most

basic method being the MIT rule [Adrian et al. 2008] [Ranjan and Rai 2012] which was

developed jointly by ‘’ and ‘’, who were both professors from the ‘’ department of MIT

in the 1960s. [Coman and Boldisor 2014 and 2013] demonstrates the application of this

algorithm for accomplishing MRAC. Another interesting method for implementing this

control is called design by Lyapunov approach. [Ampsefidis et al. 1993] and [Black et

al. 2014] provide details on the design of MRAC depending upon a-priori information.

A comparative study between design by MIT rule and Lyapunov approach is provided

in [Pankaj et al. 2011] for the reader`s reference. The application of the Lyapunov

approach for other adaptive control systems are discussed in [Misbawu et al. 2014].

22

6.1.1 The MIT rule

The MIT rule essentially implements a mathematical condition that reduces the error

between the reference model and the physical model.

If 𝐽 represents the error between the reference and the physical model:

𝐽(𝜃1, 𝜃2 …𝜃𝑁) = |
𝑒2

2
|

Where 𝑒(𝑡) = 𝑦𝑚(𝑡) − 𝑦(𝑡) and 𝜃1, 𝜃2 …𝜃𝑁 represent the gains in the control law

In order to achieve the condition

𝑑𝐽

𝑑𝑡
=

𝜕𝐽

𝜕𝑡
+

𝜕𝐽

𝜕𝜃

𝑑𝜃

𝑑𝑡

If the second term resulting from the chain rule is sufficiently large, the total time

derivative of the model error will be made negative. For this,

𝑑𝜃

𝑑𝑡
= −𝛾

𝜕𝐽

𝜕𝜃

So that

𝑑𝐽

𝑑𝑡
=

𝜕𝐽

𝜕𝑡
− 𝛾 (

𝜕𝐽

𝜕𝜃
)
2

𝜕𝐽

𝜕𝜃
= 2𝑒

𝜕𝑒

𝜕𝜃

𝑑𝜃

𝑑𝑡
= −2𝛾𝑒

𝜕𝑒

𝜕𝜃

Assuming that the transfer function in the reference model is 𝐺𝑟𝑒𝑓 and the plant to be

controlled is 𝐺𝑝, the error can be expressed as:

𝑒(𝑡) = 𝑘𝐺𝑝(𝜃(𝑡). 𝑢𝑐(𝑡)) − 𝑘0𝐺𝑟𝑒𝑓(𝜃(𝑡). 𝑢𝑐(𝑡))

𝜕𝑒

𝜕𝜃
= 𝑘. 𝐺𝑝(𝑢𝑐(𝑡)) =

𝑘

𝑘0
. 𝑦𝑚(𝑡)

23

∴
𝑑𝜃

𝑑𝑡
= −𝛾𝑛. 𝑦𝑚(𝑡). 𝑒(𝑡, 𝜃)

Where 𝛾𝑛 = 2 𝛾. (
𝑘

𝑘0
) is called the adaptation gain.

Another modification that is used is normalization of the MIT rule using the following

formula [Jain and Nigam 2013]:

𝑑𝜃

𝑑𝑡
= −

𝛾𝑒
𝜕𝑒
𝜕𝜃

𝛼 + (
𝜕𝑒
𝜕𝜃

)
2

Substituting for
𝜕𝑒

𝜕𝜃

𝑑𝜃

𝑑𝑡
= −

𝛾𝑛𝑒𝑦𝑚

𝛼 + (𝑦𝑚)2

Where, 𝑦𝑚 is the reference model output and 𝛾𝑛and 𝛼 are constants. This modification

is done to avoid division by zero in the final integration step of the adaptive control

algorithm and is found to work satisfactorily. This is also referred to as the normalized

version of the MIT rule.

The derivative value of the gain is computed using simple the system outputs in

Simulink MATLAB and is integrated to obtain the gain values in real time. The gain

values converge to a specific value depending on the response of the reference model.

Now that the diversity of the applications of MRAC has been established, and the

simplicity with which it can be implemented, it can be concluded that MRAC is an

extremely reliable technique for dynamical systems that needs to function adaptively.

Hence, the current study is focused on implementing the MRAC law using the MIT

rule for the attitude control system of a suspended body oriented by a single reaction

wheel.

24

7 SIMULATION OF ATTITUDE CONTROL

Simulink in MATLAB is a data-flow type programming language that was originally

built with control systems in mind. Simulink offers simple arithmetic operations as well

as complex domain specific functions in digital signal processing, control system

design and design optimization function. The easiness of setting up the control system

and calculating system responses prompted the use of this programming environment

7.1 The Control System Diagram

The main control system diagram consists of the following blocks as shown below:

i. PID controlled reference model

ii. Controlled satellite model

iii. Adaptive controller

iv. Input conditioning

v. Summation blocks and scopes

vi. Set-point input block

The constituent blocks and operations of each of the blocks in the main control system

will be explained.

Figure 7.1 Complete Simulink Control System Diagram

25

7.2 Input conditioning block

The input conditioning block is a simple operation used to find the remainder of the

setpoint input or the desired angle input when it is divided by 2𝜋. The block diagram

for the block is given by:

Figure 7.2 Input conditioning block

7.3 Controlled Reference model

The controlled reference model is the desired system model with a Proportional-

Integral-Derivative(PID) control implemented. Depending on the power of the actuator

(motor), the reference model will maintain at the set-point angle given by the user. The

reference transfer function was obtained after dynamic modelling of the system using

free-body diagrams assuming dynamic equilibrium

Figure 7.3 PID controlled reference system

26

Figure 7.4 Free body diagram of chassis and reaction wheel in dynamic equilibrium

Hence, the equations obtained from these diagrams are:

𝐼2(𝜃2̈ + 𝜃1̈) + 𝑏2𝜃1̇ + 𝑇𝑐 = 0

(𝐼1 + 𝐼2)𝜃1̈ + 𝐼2𝜃2̈ + (𝑏1 + 𝑏2)𝜃1̇ + 𝐺𝜃1 = 𝑇

The state space equations can be derived using the substitution

𝑢1 = 𝜃1̇

And 𝑢2 = 𝜃2̇

Making the substitutions as mentioned above:

𝐼2(𝑢1̇ + 𝑢2̇) + 𝑏2𝑢1 = −𝑇

(𝐼1 + 𝐼2)𝑢1̇ + 𝐼2𝑢2̇ + (𝑏1 + 𝑏2)𝑢1 + 𝐺𝜃1 = 𝑇

The system can be written in the form:

[

0 𝐼2 0 𝐼2
1 0 0 0
0 𝐼1 + 𝐼2 0 𝐼2
0 0 1 0

]

[

𝜃1̇

𝑢1̇

𝜃2̇

𝑢2̇]

+ [

0 𝑏2 0 0
0 −1 0 0
𝐺 𝑏1 + 𝑏2 0 0
0 0 0 −1

] [

𝜃1

𝑢1

𝜃2

𝑢2

] = [

−1
0
1
0

]

𝑋 ̇ =

[

𝜃1̇

𝑢1̇

𝜃2̇

𝑢2̇]

= [

0 1 0 0
−17.42 −17.42 0 0

0 0 0 1
17.42 4.922 0 0

] [

𝜃1

𝑢1

𝜃2

𝑢2

] + [

0
3484

0
−4734

] 𝑇

27

𝑦 = [1 0 0 0] [

𝜃1

𝑢1

𝜃2

𝑢2

] + 0. 𝑇

This is the state space form of the governing differential equations. Using the function

tf() in MATLAB, the transfer function for this system between the torque T and the

angular displacement of the chassis 𝜃1 is given by;

𝜃1(𝑠)

𝑇(𝑠)
=

3484

𝑠2 + 17.42𝑠 + 17.42

This is the transfer function that is controlled using the PID controller and is referred to

as tf_ref in the block diagram depicted earlier.

7.4 Adaptive Controller

The adaptive controller block consists of two smaller blocks. The first block calculates

the factor 𝑦𝑚(𝑡) and the remaining block computes the value of 𝑘1and 𝑘2 after the

integration and after calculating the control law sends it as feedback to the satellite sub-

system.

Figure 7.5 First layer of sub-system

28

Figure 7.6 Sub-system for the time-derivative of gains

Figure 7.7 Subsystem for the integration of time derivatives of gains

7.5 Controlled Satellite model

The Controlled satellite model is the block representing the physical system that was

modelled in SOLIDWORKS 2013. The 3D model contains the mass and inertia

properties of all the mechanical (chassis) and the electronics sub-systems (CPU) that

were idealized in the dynamic model described in section b). This model receives a

single input – a torque input at the reaction wheel revolute element and the chassis

29

position obtained from a sensor reading obtained from the chassis block of the model

as shown below. For more details about the model, please refer to the CAD modelling

sub-section of the report. The SOLIDWORKS file was exported as a second generation

SimMechanics file, which was imported into Simulink using the command

smimport(‘filename’).

Figure 7.8 Satellite sub-system

7.6 The Motor Sub-system

The motor sub-system is meant to simulate the features of a 12V DC motor that is to be

used in the physical model. The model was available in MATLAB as an example model

and the remaining work was to obtain the motor parameters by performing a motor

characterization. Although a data-sheet could have been procured from the internet, as

these values indicated the as-purchased values of the motor parameters. Hence, to

determine the current parameters, the motor characterization was done which has been

explained in section 8.

30

Figure 7.7 Controlled DC motor sub-system

31

8 MOTOR CHARACTERIZATION

Motors form an essential part of many electro-mechanical systems. They are one of the

most common actuators available that convert electrical energy into rotational energy

in the form of angular velocity and torque. When the system under study has to be

subjected to a control system, perhaps to be simulated in a program, a system-level

transfer function that characterizes the motor is convenient [Seaton]. Apart from this

advantage from a control systems perspective, certain motor parameters such as

efficiency, point of stall may need to be recalculated to decide if the motor can perform

the expected task[Harington and Kroninger 2013]. The term ‘characterization’ can also

be used in contexts such as propeller characterization.

The mathematical model of the motor in the form a transfer function is pivotal in studies

were efficient compensators have to be designed [Anguluri 2014], [Rose et al. 2014]

where the moment of inertia and friction co-efficient were experimentally discovered,

[Niekerk et. al 2015] for UAVs and analyzing the effects of motor characterization on

hybrid vehicles as in [Mehdrad 2003].

The complete system-level transfer function [Seaton] of the DC motor is of the form:

𝜔

𝑉𝑎
=

𝐾

(𝐽. 𝐿𝑎)𝑠2 + (𝐽. 𝑅𝑎 + 𝑏. 𝐿)𝑠 + 𝑏. 𝑅𝑎 + 𝐾2

Where 𝜔 is the angular velocity, 𝐾 is the motor constant, 𝐽 is the inertia of the motor,

𝐿𝑎is the inductance of the motor, 𝑅𝑎 is the armature resistance and 𝑏 is the friction co-

efficient. Within the scope of this project, the friction co-efficient is considered to be

negligible []. Hence, the modified transfer function is of the form:

𝜔

𝑉𝑎
=

𝐾

(𝐽. 𝐿𝑎)𝑠2 + (𝐽. 𝑅𝑎 + 𝐿)𝑠 + 𝐾2

The following methods as per [Seaton] was used to measure the armature resistance

and the inductance of the dc motor:

Keeping aside the dynamics of the motor, the motor is essentially an electrical circuit.

Hence, clamping the motor shaft and measuring the current flowing through the system

for an applied voltage can be used to measure the resistance of the motor using Ohm`s

law:

32

𝑉𝑎 = 𝐼𝑎𝑅𝑎𝑟𝑚

The resistance was measured for six different voltage values for six different armatures.

The voltage was applied using a DC power supply.

Figure 8.1 Setup for measurement of armature resistance

Table 8.1 Observations for measurement of armature resistance

 Voltage Current Resistance

(Ohm`s law)

1 0.14 7.142

2 0.23 8.695

3 0.33 9.090

4 0.41 9.756

5 0.48 10.416

6 0.55 10.909

Average Resistance 9.335

The resistances were measured for different rotor positions and the resistance was

averaged over all the values:

𝑅𝑎 = 𝑅𝑎𝑟𝑚 = 9.685Ω

33

Next, the inductance of the motor armature is measured. As the motor windings consist

of both resistive and inductive elements, there is a time constant associated with the rise

and decay of current within the circuit. The circuit used was of the following form:

Figure 8.2 Circuit for measurement of inductance

The equipment used were Agilent 13220A, 20 MHz function/arbitrary waveform

generator and Agilent technologies, InfiniVision DSO-X 2002A oscilloscope.

Figure 8.3 Setup fot measurement of inductance

The waveform obtained on the oscilloscope:

Figure 8.4 Waveform obtained

Assuming that the total time of decay was approximately equal to 5 time constants:

Function Generator

Oscilloscope

DC motor

100 Ohms resistor

34

5𝐿

𝑅𝑒𝑞
= 500𝜇𝑠

𝑅𝑒𝑞 = 𝑅𝑎𝑟𝑚 + 100

∴ 𝐿 = 10.9685𝑚𝐻

Further, the no-load characteristics of the dc motor were measured. This was done using

the same DC power supply used to measure the armature resistance. Simultaneously, a

laser tachometer was used to measure the RPM of the motor at each data point. The

resulting voltage-RPM characteristics are plotted below. Using the formula:

𝑃 =
2𝜋𝑁𝑇

60

The values of torque at each of the data points were also calculated

Figure 8.5 RPM and Torque Curves

Finally, the motor constant was calculated. The motor constant is given by:

𝑘 =
𝑉 − 𝑉𝐵𝐸𝑀𝐹

𝜔

The back EMF 𝑉𝐵𝐸𝑀𝐹is calculated by multiplying no-load current and armature

resistance and dividing by the angular velocity at that point. This operation was carried

out at all the data points and the average value was calculated.

𝐾 = 0.00158
𝑣𝑜𝑙𝑡𝑠 − 𝑠

𝑟𝑎𝑑

35

Therefore, the transfer function obtained is:

𝜔

𝑉𝑎
=

0.00158

(0.0000057)𝑠2 + (0.01566)𝑠 + 0.00000249

36

9 PHYSICAL MODEL

Figure 9.1 Working model

37

9.1 Fabrication of the chassis

Based on the CAD model, the suspended body is made using cast acrylic sheets. An

interlocking type walls is to be manufactured. Hence, the CAD file is converted to a

CoralDRAW file and fed into a CNC laser cutter.

Figure 9.2 Individual components of the chassis

These toothed walls can be easily snapped on to each other to complete the chassis of

the suspended body.

Figure 9.3 Assembled chassis

38

9.2 Circuitry

The electronic components used in the satellite are connected with one another using a

circuit board. The circuit board is made by soldering berg strips onto a copper clad

general purpose PCB. Hence the required electronic components can simply be snapped

onto the circuit. Provision has been given to connect jumper wires using additional berg

strips.

Figure 9.4 Circuit Board

9.2.1 L29810 Motor Driver

The LN298 is a high voltage, high current, dual full-bridge motor driver designed to

accept standard TTL logic levels and drive inductive loads such as relays, solenoids,

DC and stepping motors. The unit used in this project has an inbuilt heat sink and hence

is equipped to handle heating due to high current situations like direction change.

39

Figure 9.5 L29810 Motor Driver

9.2.2 DC Motor

A 12V D motor is used. Refer to Section 8 for specification of the motor.

Figure 9.6 DC Motor

9.2.3 11.1V Li-Po Battery

A Lithium-Polymer (Li-Po) Battery is used as the power source for motor and

microcontroller. It is capable of giving instantaneous discharge current up to 55A. It

has a very light weight and is small in size compared to Ni-Cd and Lead acid batteries.

It has a long life without losing charging capacity. It weighs 167 g.

40

Figure 9.7 Battery

9.2.4 Sensors

MPU 6050

The InvenSense MPU-6050 sensor contains a MEMS accelerometer and a MEMS gyro

in a single chip. It is very accurate, as it contains 16-bits analog to digital conversion

hardware for each channel. Therefor it captures the x, y, and z channel at the same time.

The sensor uses the I2C-bus to interface with the NodeMCU micro.

Figure 9.8 Sensors Used

HMC 5883L

This is a breakout board for Honeywell’s HMC5883L, a 3-axis digital compass.

Communication with the HMC5883L is simple and all done through an I2C interface.

There is no on-board regulator, so a regulated voltage of 2.16-3.6VDC should be

supplied.

41

9.2.5 ESP 8266 – Node MCU

An Arduino Uno development board was used in the inverted pendulum and the initial

model of satellite. In this model, a NodeMCU was used as the controller.

The NodeMCU has an ESP8266 Wi-Fi SoC from Espressif Systems. The firmware uses

the Lua scripting language. It can also be flashed with firmware that supports

interfacing with the Arduino IDE.

The NodeMCU has several advantages over the Arduino Uno. Firstly, it is inexpensive.

It has the ESP8266 which carries an inbuilt WiFi module which can be used to

wirelessly communicate between the NodeMCU and devices connected to the same

network like smartphones or computers for uploading code, and sending data. It has 16

General Purpose Input/Output (GPIO) pins. The primary advantage is the high

frequency clock (80MHz) and the large storage space (4 MB). [igrr, et al, 2017]

Figure 9.9 NodeMCU pin definition diagram

42

10 IMPLEMENTATION ON HARDWARE

10.1 Implementation of PID

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 ∫𝑒(𝑡)𝑑𝑡 + 𝐾𝐷

𝑑

𝑑𝑡
𝑒(𝑡)

Equation 10.1 Standard PID Equation

Where, 𝑒 = 𝑆𝑒𝑡𝑝𝑜𝑖𝑛𝑡 − 𝐼𝑛𝑝𝑢𝑡
error = angle - refAngle;

error = ((int(error*100)+18000+36000)%36000-18000)/100.0;

10.1.1 Calculation for the input to PID

The error needed to be mapped between -180 degrees and 180 degrees. This is required

to avoid the 0 to 360 discontinuity when it reaches the Setpoint (refAngle). This ensures

that the error is centered around zero at the vicinity of the Setpoint and is

mathematically consistent for PID calculation at all values of the setpoint. The error is

multiplied and divided with 100 because the modulo function only works with the

datatype ‘int’.

 errsum += error; \\Discrete Integration

 derror = error - preverror;\\ Discrete Differentiation

 preverror = error;

10.1.2 Calculating integral and derivative terms

Due to constant time interval between successive PID calculations (~10 milliseconds),

the discrete integration and differentiation can be reduced to summation and backward

differencing.

 if(errsum>1500){

 errsum=1500;

 }

 else if(errsum<-1500){

 errsum=-1500;

 }

43

Capping of integral term

This is required so that the integral term does not drastically increase when debugging.

 float pid=kp*error + ki*errsum + kd*derror;

Calculating PID

 if(pid>0){

 if(pid>1023){

 pid=1023;\\Saturating PID

 }

 analogWrite(4,pid);

 analogWrite(5,0);

 }

 else{

 if(pid<-1023){

 pid=-1023;\\Saturating PID

 }

 analogWrite(5,-1*pid);

 analogWrite(4,0);

 }

This snippet of code Saturates PID output at maximum and minimum values of PWM

and direct mapping of PID output to the PWM to drive the motors.

10.2 Reading from Magnetometer

A HMC883L magnetometer is used to obtain the absolute orientation of the system

with respect to magnetic north. The sensor gives raw magnetic field strength in its own

axis. The sensor has a full-scale range of ±8 Guass and a resolution of up to 5 milli-

Gauss. Communication with the HMC5883L is done through an I2C interface using the

Wire library of Arduino.

The yaw angle of the system is calculated as arctan of the ratio between x axis and y

axis strengths where the magnetometer’s xy-plane is kept horizontal . Due to low

magnetic declination of the testing location, the calculation of declination correction is

omitted. The yaw angle is in the range of 0 to 360 degrees from due north. For the

complete program code, please refer Appendix C.

44

10.3 Online Tuning of PID Parameters Using Blynk

Blynk is an Internet of Things platform with a mobile application builder that allows to

visualize sensor data and control electronics remotely within the same network. In our

case, blynk was used to remotely connect to the onboard microcontroller via a custom

TCP-IP protocol. The PID parameters are tuned to from the app with the assistance of

real-time plot of the orientation. The Blynk support package for ESP8266 is used on

the microcontroller. An interface is made on the app for tuning using sliders. For the

complete program code, please refer Appendix C.

Figure 10.1 Interface on the Blynk App

45

10.4 WiFi Communication With Smartphone

The Setpoint can be changed by remotely sending it via wifi to the microcontroller on

the cube. To accomplish this, User Datagram Protocol(UDP) was chosen because of its

high speed. UDP can deliver packets faster than TCP with less delay. In this case, the

microcontroller is the UDP server. The Wifi client that transmitted the ‘refAngle’ was

a smartphone app-HyperIMU. This app transmitted the phone orientation via UDP

protocol and this was used as a Setpoint for the system hence, mirroring the smartphone.

For the complete program code, please refer Appendix C.

46

10.5 Wifi Communication with Simulink

In order to implement adaptive control by processing in Simulink itself, a

communication channel needed to be setup between the microcontroller and Simulink.

For this, Simulink Desktop Real-Time toolbox was used. ‘Stream Input’ block was used

to receive current orientation of the physical model. ‘Stream Output’ block was used to

send PWM signals to drive the motor.

These blocks used UDP protocol to communicate. In Simulink, there is no access to

buffers of the UDP stream and are automatically taken care of.

The code receives the input buffer, typecasts it to ‘int’ datatype and assigns it to ‘pwm’

variable.

 char toSend[255];

 String(String(angle)+"\n").toCharArray(toSend,255);

 Serial.printf("%s\n", toSend);

 Udp.beginPacket(Udp.remoteIP(), 8820);

 Udp.write(toSend);

 Udp.endPacket();

Figure 10.2 HyperIMU App

Interface

47

The above snippet of code converts ‘angle’ into a ‘string’ datatype and adds it to the

output buffer. For the complete program, refer Appendix D.

 Figure 10.3 Simulink block diagram

48

11 RESULTS

Some of the most important performance metrics of any control systems are the rise

time, the settling time and the steady state error. The variation of these three metrics is

observed with respect to the adaptation gain. The rise time is defined as the time taken

to reach 90% of the set-point from 10% of the set-point. The settling time is the time

taken by the system to reach between 2% and 5% of the set-point value. Finally, the

steady state error is the amplitude of oscillations sustained by the system as time tends

to infinity.

The settling times and rise times were plotted for adaptation gains ranging from 0 to 6

with steps of 0.25. In both cases, the values saturated towards a specific value on

increasing the adaptation gain.

However, the changes in adaptation gain did not have any effect on the steady state

error as represented by the erratic changes observed in Figure.

Figure 11.1 Graphs of Setting Time and Rise Time vs Adaptation Gain

Figure 11.2 Steady State Error vs Adaptation Gain

49

Figure 11.3 Response of MRAC for different Gamma values

Further, the response of the MRAC implemented physical model was measured for

different values of adaptation gains. It is observed that for low values of adaptation

gain(𝛾), the response is noisy and has longer rise times. The value 𝛾=3, seems to most

accurately follow the reference system`s response. This suggests that for a given

system, there might be a specific value of adaptation gain at which it best resembles the

controlled reference model.

Finally, the MIT implementation of MRAC was compared with the Lyapunov method

of implementing the same control system. The Lyapunov method relies on the use of

the output of the system in the gain updation parameters unlike the MIT rule. It is

widely acknowledged that the Lyapunov approach is better than the MIT rule, however,

in the simulations completed, the model implementing the MIT rule appears to settle

faster and have lesser off-shoot.

50

The following images depict the responses for the reference system model, MRAC-

MIT and MRAC-Lyapunov rule for comparison.

Figure 11.4 System responses for Gamma = 1, gamma = 2

Figure 11.5 System Responses for Gamma = 3, Gamma = 4

51

12 FUTURE SCOPE OF WORK

There are several different kinds of performance metrics. From a computational

perspective, the CPU-time used for controlling the system is relevant. Another

important metric is the actuator energy that can also have a dependence on the

adaptation gain. Both of these would be highly relevant where extremely spartan and

energy-efficient designs such as in aerospace.

An interesting study would be to program a neural network with the performance

metrics as inputs to the first layer and the final year calculating the adaptation gain. The

simulated experiment performed above already provides several data-sets.

MRAC should also be compared with more generic evolutionary optimization

algorithms like Particle Swarm Optimization, Genetic Algorithms etc. along the same

metrics.

It is envisioned to derive a composite index function by assigning weights to different

performance metrics specified above. The adaptive control has to be implemented in

such fashion that the error will be derived from this index function for each response in

real time and the adaptive tuning will arrive at the most ‘appropriate combination of

gains’. This way, the weights of the index function can be altered to make the system

more instinctive or sensitive towards a specific performance metric.

As depicted in the results section, the MIT rule appears to perform better than the

Lyapunov rule contrary to popular opinion. Hence, a study about the specificity of

MRAC towards the system to favour one particular kind of implementation would

prove relevant.

Also, it was noticed that during the hardware implementation, as the PID output

saturates, there is less chance for the system recovering from that state. This provides

an interesting area for investigation.

52

LIST OF APPENDICES

Appendix – A

DC Motor Specifications:

No. Property Value

1. Dimensions 𝜙42.3 × 67𝑚𝑚

2. Shaft diameter 𝜙5.005 𝑚𝑚

3. Input voltage 18 volts

4. No load speed 20950 rpm

5. No load current 2.9 A

6. Weight 186 g

53

Appendix - B

Stream input block parameters:

Appendix – C

54

Program MPtest2

#define BLYNK_PRINT Serial

#include <Wire.h>

#include <ESP8266WiFi.h>

#include <BlynkSimpleEsp8266.h>

#include <WiFiUdp.h>

#define Addr 0x1E // 7-bit address of HMC5883 compass

const char* ssid = "Dendb";

const char* password = "csnitk123";

char auth[] = "4906ef7023834762b123af1bf52f975e";

WiFiUDP Udp;

unsigned int localUdpPort = 4210; // local port to listen on

char incomingPacket[255]; // buffer for incoming packets

char replyPacekt[] = "Hi there! Got the message :-)"; // a reply

string to send back

//String inputString = ""; // a string to hold incoming data

float refAngle=180;

double angle=180.0, error=0,errsum=0, preverror=0, derror = 0;

float kp=0, ki=0.0, kd = 0;

BLYNK_WRITE(V1)

{

 kp = param.asFloat()/10; // assigning incoming value from pin V1 to

a variable

 Blynk.virtualWrite(5, kp);

}

BLYNK_WRITE(V2)

{

 ki = param.asFloat()/100; // assigning incoming value from pin V1 to

a variable

 Blynk.virtualWrite(6, ki);

}

BLYNK_WRITE(V3)

{

 kd = param.asFloat()/10; // assigning incoming value from pin V1 to

a variable

 Blynk.virtualWrite(7, kd);

}

void setup() {

 Blynk.begin(auth, ssid, password);

// Serial.printf("Connecting to %s ", ssid);

// WiFi.begin(ssid, password);

// while (WiFi.status() != WL_CONNECTED)

// {

// delay(500);

// Serial.print(".");

// }

// Serial.println(" connected");

 Udp.begin(localUdpPort);

55

 Serial.printf("Now listening at IP %s, UDP port %d\n",

WiFi.localIP().toString().c_str(), localUdpPort);

 // put your setup code here, to run once:

 pinMode(4,OUTPUT);

 pinMode(5,OUTPUT);

 Serial.begin(9600);

 Wire.begin(12,14);

 // Set operating mode to continuous

 Wire.beginTransmission(Addr);

 Wire.write(byte(0x02));

 Wire.write(byte(0x00));

 Wire.endTransmission();

}

void loop() {

 int time = micros();

 Blynk.run();

 int packetSize = Udp.parsePacket();

 if (packetSize)

 {

 // receive incoming UDP packets

 Serial.printf("Received %d bytes from %s, port %d\n", packetSize,

Udp.remoteIP().toString().c_str(), Udp.remotePort());

 int len = Udp.read(incomingPacket, 255);

 if (len > 0)

 {

 incomingPacket[len] = 0;

 }

 Serial.printf("UDP packet contents: %s\n", incomingPacket);

 Udp.beginPacket("192.168.43.196", 5555);

 Udp.write(incomingPacket);

 Udp.endPacket();

 int i=0;

 String inputString = "";

 while(incomingPacket[i]!=',')

 {

 inputString += (char)incomingPacket[i++];

 }

 refAngle = inputString.toFloat();

 Serial.println(refAngle);

 }

 //Compass

 int x, y, z;

 // Initiate communications with compass

 Wire.beginTransmission(Addr);

 Wire.write(byte(0x03)); // Send request to X MSB register

 Wire.endTransmission();

 Wire.requestFrom(Addr, 6); // Request 6 bytes; 2 bytes per axis

 if(Wire.available() <=6) { // If 6 bytes available

 x = Wire.read() << 8 | Wire.read();

56

 z = Wire.read() << 8 | Wire.read();

 y = Wire.read() << 8 | Wire.read();

 }

 // If compass module lies flat on the ground with no tilt,

 // just x and y are needed for calculation

 if(x > 10000) x-=65536;

 if(y > 10000) y-=65536;

 if(z > 10000) z-=65536;

 float heading=atan2(x, y)/0.0174532925;

 if(heading < 0) heading+=360;

 //heading=360-heading; // N=0/360, E=90, S=180, W=270

 angle = heading;

 Serial.print(angle);

 Serial.print('\t');

 error = angle - refAngle;

 error = ((int(error*100)+18000+36000)%36000-18000)/100.0;

 errsum += error;

 derror = error - preverror;

 preverror = error;

 if(errsum>1500){

 errsum=1500;

 }

 else if(errsum<-1500){

 errsum=-1500;

 }

 float pid=kp*error + ki*errsum + kd*derror;

 if(pid>0){

 if(pid>900){

 pid=1023;

 }

 analogWrite(4,pid);

 analogWrite(5,0);

 }

 else{

 if(pid<-900){

 pid=-1023;

 }

 analogWrite(5,-1*pid);

 analogWrite(4,0);

 }

 Serial.print(pid);

 Serial.print('\t');

 Serial.println(error);

 delay(8);

 Blynk.virtualWrite(8, error);

 //Blynk.virtualWrite(9, pid);

 }

#define BLYNK_PRINT Serial

#include <Wire.h>

#include <ESP8266WiFi.h>

57

#include <BlynkSimpleEsp8266.h>

#include <WiFiUdp.h>

#define Addr 0x1E // 7-bit address of HMC5883 compass

const char* ssid = "Dendb";

const char* password = "csnitk123";

char auth[] = "4906ef7023834762b123af1bf52f975e";

WiFiUDP Udp;

unsigned int localUdpPort = 4210; // local port to listen on

char incomingPacket[255]; // buffer for incoming packets

char replyPacekt[] = "Hi there! Got the message :-)"; // a reply

string to send back

//String inputString = ""; // a string to hold incoming data

float refAngle=180;

double angle=180.0, error=0,errsum=0, preverror=0, derror = 0;

float kp=0, ki=0.0, kd = 0;

BLYNK_WRITE(V1)

{

 kp = param.asFloat()/10; // assigning incoming value from pin V1 to

a variable

 Blynk.virtualWrite(5, kp);

}

BLYNK_WRITE(V2)

{

 ki = param.asFloat()/100; // assigning incoming value from pin V1 to

a variable

 Blynk.virtualWrite(6, ki);

}

BLYNK_WRITE(V3)

{

 kd = param.asFloat()/10; // assigning incoming value from pin V1 to

a variable

 Blynk.virtualWrite(7, kd);

}

58

Appendix - D

Program simu

void setup() {

 Blynk.begin(auth, ssid, password);

// Serial.printf("Connecting to %s ", ssid);

// WiFi.begin(ssid, password);

// while (WiFi.status() != WL_CONNECTED)

// {

// delay(500);

// Serial.print(".");

// }

// Serial.println(" connected");

 Udp.begin(localUdpPort);

 Serial.printf("Now listening at IP %s, UDP port %d\n",

WiFi.localIP().toString().c_str(), localUdpPort);

 // put your setup code here, to run once:

 pinMode(4,OUTPUT);

 pinMode(5,OUTPUT);

 Serial.begin(9600);

 Wire.begin(12,14);

 // Set operating mode to continuous

 Wire.beginTransmission(Addr);

 Wire.write(byte(0x02));

 Wire.write(byte(0x00));

 Wire.endTransmission();

}

void loop() {

 int time = micros();

 Blynk.run();

 int packetSize = Udp.parsePacket();

 if (packetSize)

 {

 // receive incoming UDP packets

 Serial.printf("Received %d bytes from %s, port %d\n", packetSize,

Udp.remoteIP().toString().c_str(), Udp.remotePort());

 int len = Udp.read(incomingPacket, 255);

 if (len > 0)

 {

 incomingPacket[len] = 0;

 }

 Serial.printf("UDP packet contents: %s\n", incomingPacket);

 Udp.beginPacket("192.168.43.196", 5555);

 Udp.write(incomingPacket);

 Udp.endPacket();

 int i=0;

 String inputString = "";

 while(incomingPacket[i]!=',')

59

 {

 inputString += (char)incomingPacket[i++];

 }

 refAngle = inputString.toFloat();

 Serial.println(refAngle);

 }

 //Compass

 int x, y, z;

 // Initiate communications with compass

 Wire.beginTransmission(Addr);

 Wire.write(byte(0x03)); // Send request to X MSB register

 Wire.endTransmission();

 Wire.requestFrom(Addr, 6); // Request 6 bytes; 2 bytes per axis

 if(Wire.available() <=6) { // If 6 bytes available

 x = Wire.read() << 8 | Wire.read();

 z = Wire.read() << 8 | Wire.read();

 y = Wire.read() << 8 | Wire.read();

 }

 // If compass module lies flat on the ground with no tilt,

 // just x and y are needed for calculation

 if(x > 10000) x-=65536;

 if(y > 10000) y-=65536;

 if(z > 10000) z-=65536;

 float heading=atan2(x, y)/0.0174532925;

 if(heading < 0) heading+=360;

 //heading=360-heading; // N=0/360, E=90, S=180, W=270

 angle = heading;

 Serial.print(angle);

 Serial.print('\t');

 error = angle - refAngle;

 error = ((int(error*100)+18000+36000)%36000-18000)/100.0;

 errsum += error;

 derror = error - preverror;

 preverror = error;

 if(errsum>1500){

 errsum=1500;

 }

 else if(errsum<-1500){

 errsum=-1500;

 }

 float pid=kp*error + ki*errsum + kd*derror;

 if(pid>0){

 if(pid>900){

 pid=1023;

 }

 analogWrite(4,pid);

 analogWrite(5,0);

 }

 else{

 if(pid<-900){

60

 pid=-1023;

 }

 analogWrite(5,-1*pid);

 analogWrite(4,0);

 }

 Serial.print(pid);

 Serial.print('\t');

 Serial.println(error);

 delay(8);

 Blynk.virtualWrite(8, error);

 //Blynk.virtualWrite(9, pid);

 }

61

REFERENCES

• Abraham, A., Jatoth, R. K., & Rajasekhar, A. (2014). Design of intelligent

PID/(PID mu)-D-lambda speed controller for chopper fed DC motor drive using

opposition based artificial bee colony algorithm.

• Adam M, Adjei-Saforo KE, Ebrahimpanah S, Adaptive Control Strategy using

Lyapunov Stability Theory, International Journal of Engineering Research &

Technology Vol. 3 - Issue 9 (September - 2014)

• Adrian, C., Corneliu, A., & Mircea, B. (2008, May). The simulation of the

adaptive systems using the MIT rule. In International Conference on

Mathematical Methods and Computational Techniques in Electrical

Engineering (pp. 301-305).

• Alqaudi, B., Modares, H., Ranatunga, I., Tousif, S. M., Lewis, F. L., & Popa,

D. O. (2016). Model reference adaptive impedance control for physical human-

robot interaction. Control Theory and Technology, 14(1), 68-82.

• Ampsefidis, A. J., Białasiewicz, J. T., & Wall, E. T. (1993). Lyapunov design

of a new model reference adaptive control system using partial a priori

information. Kybernetika, 29(4), 339-350.

• B. Bohari, L.N.M. Ismail, R. Varatharajoo, Spacecraft pitch and roll/yaw

actuations using control momentum gyroscopes for attitude stabilization,

Journal Mekanikal 23 (2007) 1–14.

• Black, W. S., Haghi, P., & Ariyur, K. B. (2014). Adaptive systems: History,

techniques, problems, and perspectives. Systems, 2(4), 606-660.s

• Coman, S., & Boldisor, C. (2014). Adaptive PI controller design to control a

mass-damper-spring process. Bulletin of the Transilvania University of Brasov.

Engineering Sciences. Series I, 7(2), 69.

• Coman, S., & Boldisor, C. (2013). Model reference adaptive control for a DC

electrical drive. Bull. Transilvanic Univ. Brasov Ser. I: Eng. Sci, 6(2), 33-38.

• L.H. Geng, D.Y. Xiao, Q. Wang, T. Zhang, J.Y. Song, Attitude-control model

identification of on-orbit satellites actuated by reaction wheels, Acta Astro-

nautica 66 (2010) 714–721.

62

• Ehsani, M., Gao, Y., & Gay, S. (2003, November). Characterization of electric

motor drives for traction applications. In Industrial Electronics Society, 2003.

IECON'03. The 29th Annual Conference of the IEEE (Vol. 1, pp. 891-896).

IEEE.

• Hassan, A. U., & Sudinb, S. (2014). Road Vehicle Following Control Strategy

Using Model Reference Adaptive Control Method Stability Approach.

• Harrington, A. M., & Kroninger, C. (2013). Characterization of small dc

brushed and brushless motors (No. ARL-TR-6389). ARMY RESEARCH LAB

ABERDEEN PROVING GROUND MD VEHICLE TECHNOLOGY

DIRECTORATE.

• Han, Y., Biggs, J. D., & Cui, N. (2015). Adaptive Fault-Tolerant Control of

Spacecraft Attitude Dynamics with Actuator Failures. Journal of Guidance,

Control, and Dynamics, 38(10), 2033-2042.

• Ismail, Zuliana and Renuganth, Varatharajoo, A study of reaction wheel

configurations for a 3-axis satellite attitude control – Advances in Space

Research 45 (2010) 750 – 759

• Jaeyoung H, Sangseok Y, Sun Y, “Advanced thermal management of

automotive fuel cells using a model reference adaptive control algorithm”

(February 2017). International Journal of Hydrogen Energy, volume 42, issue

7, pages 4328-4341

• Jain, P., & Nigam, M. J. (2013). Design of a model reference adaptive controller

using modified MIT rule for a second order system. Advance in Electronic and

Electric Engineering, 3(4), 477-484.

• K.D. Kumar, M.J. Tahk, H.C. Bang, Satellite attitude stabilization using solar

radiation pressure and magnetotorquer, Control Engineering Practice 17 (2009)

267–279.

• Kilic, E., Ozcalik, H.R. and Yilmaz, S., 2016. Efficient speed control of

induction motor using RBF based model reference adaptive control

method. automatika, 57(3), pp.714-723.

• M. Lovera, A. Astolfi, Global magnetic attitude control of spacecraft, in: 43rd

IEEE Conference on Decision and Control, 2004, pp. 267–272.

63

• Leduc, H., Pittet, C., & Peaucelle, D. (2017). Adaptive attitude control of a

microsatellite during payload deployment.

• Meyer, J., N. Delson, and R. de Callafon, Design, modeling and stabilization of

a moment exchange based inverted. Preprints of the 15th IFAC Symposium on

System Identification, Saint-Malo, France, July 6-8, 2009

• Mohanarajah, Gajamohan, Michael Merz, Igor Thommen and Raffaello

D’Andrea, The Cubli: A Cube that can Jump Up and Balance, 2012 IEEE/RSJ

International Conference on Intelligent Robots and Systems. October 7 – 12,

2012. Vilamoura. Algarve, Portugal

• Muehlebach, Michael, Gajamohan Mohanarajah, and Raffaello D’Andrea,

Nonlinear Analysis and Control of a Reaction Wheel-based 3D Inverted

Pendulum

• Muehlebach , Michael, Tobias Widmer and Raffaello D’Andrea, The Cubli: A

Reaction Wheel Based 3D Inverted Pendulum, 2012 IEEE/RSJ International

Conference on Intelligent Robots and Systems. October 7 – 12, 2012.

Vilamoura. Algarve, Portugal

• M. Munshi and S. G. Choudhuri, "Model Reference Adaptive System using

Rotor Flux and Back Emf techniques for speed estimation of an Induction Motor

operated in Vector Control mode: A comparative study," 2016 IEEE Uttar

Pradesh Section International Conference on Electrical, Computer and

Electronics Engineering (UPCON), Varanasi, India, 2016, pp. 44-49.

doi: 10.1109/UPCON.2016.7894622

• D. van Niekerk, M. Case and D. V. Nicolae, "Brushless direct current motor

efficiency characterization," 2015 Intl Aegean Conference on Electrical

Machines & Power Electronics (ACEMP), 2015 Intl Conference on

Optimization of Electrical & Electronic Equipment (OPTIM) & 2015 Intl

Symposium on Advanced Electromechanical Motion Systems

(ELECTROMOTION), Side, 2015, pp. 226-231.

doi: 10.1109/OPTIM.2015.7426988

64

• Nudehi, Shahin S., Umar Farooq, Aria Alasty and Jimmy Issa, Satellite attitude

control using three reaction wheels, 2008 American Control Conference,

Westin Seattle, Washington, USA, June 11-13, 2008

• Pankaj, S., Kumar, J. S., & Nema, R. K. (2011). Comparative analysis of MIT

rule and Lyapunov rule in model reference adaptive control scheme. Innovative

Systems Design and Engineering, 2(4), 154-162.

• Sahamı, F., & Salamci, M. U. (2016, May). Decentralized model reference

adaptive control design for nonlinear systems; application to cancer treatment.

In Carpathian Control Conference (ICCC), 2016 17th International (pp. 635-

640). IEEE.

• Seaton, D. Brushed DC Motor Control: Parameter Characterization, open loop

and PI controller simulation.

• Şit, Sami, Erdal Kılıç, Hasan Rıza Özçalık, Mahmut Altun, and Ahmet Gani.

"Model Reference Adaptive Control based on RBFNN for Speed Control of

Induction Motors." (2016).

• M.J. Sidi, Spacecraft Dynamic and Control, Cambridge University Press, 1997.

• Rajiv R, Pankaj R, Performance Analysis Of A Second Order System Using

MRAC, International Journal Of Electrical Engineering & Technology (IJEET),

Volume 3, Issue 3, October - December (2012), pp. 110-120

• Rose, C. G., French, J. A., & O'Malley, M. K. (2014, February). Design and

characterization of a haptic paddle for dynamics education. In Haptics

Symposium (HAPTICS), 2014 IEEE (pp. 265-270). IEEE.

• Thu, K. M., & Igorevich, G. A. (2016, October). Modeling and design

optimization for quadcopter control system using L1 adaptive control.

In Information Technology, Electronics and Mobile Communication

Conference (IEMCON), 2016 IEEE 7th Annual (pp. 1-5). IEEE.

• Wei, Y., Sun, Z., Hu, Y., & Wang, Y. (2016). On fractional order composite

model reference adaptive control. International Journal of Systems

Science, 47(11), 2521-2531.

• Igrr, Pgollor, Raimohanska, Reaper7, Plinioseniore, Hallard, Kalonk, Lnxbil,

Wemos, http://esp8266.github.io/Arduino/versions/2.0.0/doc/reference.html

https://github.com/igrr
https://github.com/pgollor
https://github.com/raimohanska
https://github.com/reaper7
https://github.com/plinioseniore
https://github.com/hallard
https://github.com/KaloNK
https://github.com/lnxbil
https://github.com/wemos
http://esp8266.github.io/Arduino/versions/2.0.0/doc/reference.html

65

• Tansel Yucelen, https://www.youtube.com/watch?v=pU5vq6rjmKk

• Beauregard, B. (2017). Improving the Beginner’s PID – Introduction. Retrieved

February 19, 2017, from brettbeauregard Project Blog:

http://brettbeauregard.com/blog/2011/04/improving-the-beginners-

pidintroduction/

https://www.youtube.com/user/tyucelen
https://www.youtube.com/watch?v=pU5vq6rjmKk

