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ABSTRACT 

 

Space systems involve multiple scenarios where system parameters will fluctuate in 

real time. The objective is to implement a simple adaptive control algorithm, MRAC 

using the MIT rule for yaw control of a suspended body using a reaction wheel and 

compare it with PID control. The direct implementation of this technique to such a 

system was not found in literature. 

A realistic model of the reaction wheel system was designed using SolidWorks. The 

model was exported to SimMechanics. PID and MRAC were implemented in Simulink 

environment. A physical model, closely resembling the CAD model was fabricated 

using open source components. PID control was successfully implemented. Further, 

MRAC implemented in Simulink was wirelessly interfaced in real time to the physical 

model. 

The results depict that the control system works almost as good as PID in terms of 

system response and simultaneously provides the much needed adaptive capability in 

such environments. 
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1  INTRODUCTION 

The attitude control of a satellite is an important part of most missions in the space. Not 

only a suitable control methodology, but also appropriate actuators should be applied 

in order to help to achieve the goal of the mission and satisfy the constraints, e.g. solar 

radiation [K.D. Kumar, et al], reaction wheels [L.H. Geng, et al], magnetic torque rod 

[M. Lovera, et al], thrusters [M.J. Sidi, et al], control moment gyro [B. Bohari, el al], 

etc. To stabilize the system with uncertainties, different methods have been proposed 

over the years. It is a well-known fact that PID controllers have dominated industrial 

control applications even in aerospace engineering [K.D. Kumar, et al], although there 

has been considerable interest to research about the implementation of advanced 

controllers. They are straightforward to use, as almost everyone with some basic 

knowledge in control engineering may be able to employ it satisfactorily. The fixed 

gain PID controller cannot perfectly stabilize non- linear systems with uncertainties in 

terms of the model and parameters. To enhance the performance of the PID controller, 

a simple adaptive control algorithm, Model Reference Adaptive Control (MRAC) using 

the MIT rule for yaw control of a suspended body using a reaction wheel was 

implemented 

 

1.1   Reaction Wheel 

It is common knowledge that the tail rotor of a helicopter is used to stabilize the body 

which would otherwise spin out of control. The conservation of angular momentum 

requires that if the rotor rotates in one direction with a certain amount of angular 

momentum, the body should rotate in the opposite direction with the same angular 

momentum. 

A reaction wheel functions on the same principle. An unstable system, like an inverted 

pendulum for instance, tends to fall under the torque exerted by gravity. If a reaction 

wheel is correctly positioned on the pendulum, the changes in the angular momentum 

of the reaction wheel will apply a counter-torque that causes the pendulum to rotate in 

the opposite direction. Using efficient control strategies, the inverted pendulum can be 

stabilized. 
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A reaction wheel, also called as a momentum wheel, is a type of flywheel used for 

orientation control of bodies. They are common in satellites. Orientation control is 

accomplished by equipping the body with an electric motor attached to a flywheel 

which, when its rotation speed is changed, causes the body to begin to counter-rotate 

proportionately through conservation of angular momentum [Muehlebach, et al, 

2012][Mohanarajah, et al, 2012][Muehlebach, et al]. 

 

Figure 1.1 Reaction Wheel 

There are several parameters to be kept in mind while designing a reaction wheel. Some 

of these include: 

1. Moment of inertia 

2. Radius 

3. Geometry (number of spokes) 

In usual practice, the reaction wheel assumes the shape of a flywheel to concentrate the 

mass at the rim. The Radius is an important factor when space becomes a constraint in 

small CubeSats [Nudehi, et al, 2008].  

 

1.2   One dimensional inverted pendulum 

The inverted pendulum project is a standard problem statement used to study new 

control algorithms, control mechanisms etc. For example, the cart model simulates a 

pendulum that balances itself using a sliding connector. Another technique is to use 
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gyroscopic moments to stabilize the pendulum. It is a simple platform to observe and 

verify all such techniques.  

Using the concepts explained in the preceding section, the pendulum will be balanced 

using reaction wheels. The restoring moment of the reaction wheel on the motor will 

balance the unstable inverted pendulum.  
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2  SIMULATION OF 1D INVERTED PENDULUM 

2.1   Assumptions 

Some of the assumptions made for simulating the inverted pendulum include: 

1. Rigid body components and state of pure bending 

2. Idealized motor and gearbox  

3. No air resistance 

4. Linearization around 180 degrees 

5. Neglect vibrations of the body 

 

2.2   CAD model of the 1D inverted pendulum 

A model of the pendulum was designed in SolidWorks. Each part of the model was 

designed and later assembled with the required constraints. The parts include base, 

revolute pin, pendulum body, motor and reaction wheel. Coincident and concentric 

constraints were applied between the base and the revolute pin which holds the 

pendulum body. The revolute pin, the pendulum body and the motor were rigidly 

constrained and hence function as a single unit. Coincident and concentric constraints 

were applied between the reaction wheel and motor. The CAD model of the system was 

exported using a second generation SimMechanics link – to generate an xml file.  

 

Figure 2.1 CAD model of the 1D inverted pendulum 
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2.3   1D inverted pendulum system in SimMechanics 

On importing the model into Simulink, it made the necessary initializations such as the 

environment blocks. The motor and the gear box subsystems were obtained from an 

online source.  

Second generation SimMechanics models are highly versatile. It permits assigning 

internal mechanics such as spring stiffness and damping parameters. It also has options 

for adding sensing ports and receiving signals as inputs.  

 

 

Figure 2.2 SimMechanics Block diagram of the 1D inverted pendulum system 

 

2.4   Motor and Gearbox subsystem  

Next, the motor and gearbox were modelled using an online source. The circuit uses a 

controlled voltage source, a dc motor coupled with a gearbox. Additional components 

representing inertia and friction were added to make the system more realistic. The 

motor had options to accept armature resistance, inductance, inertia and the damping. 

As the motor had not been characterized and this data was not available in the online 

catalogues, dummy values were used in place of the actual ones. 
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The blue circuit represents an electrical circuit. The DC motor block transforms the 

current to torque. The ideal torque sensor reads the torque value and displays it on a 

scope block. 

 

 

Figure 2.3 SimMechanics block diagram of motor and gear box subsystem 

2.5   The pendulum subsystem 

The torque from the motor is transmitted to the reaction wheel on top of the pendulum. 

The moment applied by the reaction wheel results in a case of pure bending. There are 

no shear forces generated along the length of the pendulum body. This means that the 

moment acting along the pendulum body is the same regardless of the position of the 

motor. The moment applied by the reaction wheel is sensed and transferred to the 

revolute joint at the base of the pendulum. 
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Figure 2.4 SimMechanics block diagram of Pendulum subsystem 

2.6   The controller subsystem 

 

The PID controller implemented was also reduced to a subsystem: 

 

Figure 2.5 SimMechanics block diagram of Controller subsystem 

 

Finally Gaussian noise of 0 mean and 0.001 variance was added to the motor input to 

factor in ambient and environmental disturbances that influences the inverted 

pendulum. 
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3  ONE DIMENSIONAL INVERTED PENDULUM 

For slightly more than a century, inverted pendulum systems have been an 

indispensable part of the controls community. They have been widely used to test, 

demonstrate and benchmark new control concepts and theories. 

Although most inverted pendulums are implemented with a mobile base (a cart and 

wheel setup), in our model, the pendulum is connected to a base fixed to the ground. It 

is balances itself using the torque provided by a reaction wheel calculated by a PID 

implementation on a micro-controller.  

In order to demonstrate the ability of the reaction wheel for attitude control applications, 

the performance of the reaction wheel for an inverted pendulum fixed to the ground via 

a revolute joint, was studied. A physical model of the CAD model in preceding section 

was developed and the associated circuitry – including the microcontroller, motor 

driver, DC power system and the wiring was implemented.  

The details of each component used for the assembly of the model are explained in the 

next few subsections. Although the paper suggests earlier that a PID control was used, 

this state was arrived at after testing with PD, PI alternatives. The pendulum was able 

to balance for a short period of time, but further tuning is required to increase its range 

of operations and stability. 

Albeit, PID is the most popular control strategy that is used for CubeSat technology, 

other control strategies such LQR (Linear Quadratic Regulator)  are also found to be 

effective as demonstrated by [Mohanarajah, et al, 2012] in project Cubli. The study of 

the reaction performance with more complicated control strategies will be an interesting 

area of research.                                                                                               
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3.1  Structure of the pendulum 

 

Figure 3.1 One dimensional inverted pendulum 

                               

The revolute joint of the pendulum was mounted on a sheet of acrylic. The Arduino 

board and the motor driver is screwed onto the holes made in the acrylic sheet. A roller 

bearing was press fit into the revolute joint pin of the pendulum. The diameter of the 

pipe was expanded by heating and the bearing was firmly fit into it. A circular clamp 

was out around the bearing to ensure that the arrangement remains fastened. A bolt was 

passed through the hole of the bearing and the end of the bolt was fastened onto the 

acrylic sheet. 

The MPU6050 - six axis IMU (Inertial Measurement Unit) was stuck to the point of the 

revolute joint. The counter-weights were added to the lower half of the pendulum body 

and the motor fastened to the top of the upper half using zip ties and tape. The two 

halves were connected together using a T – junction. Finally, the reaction wheel was 

attached to the motor shaft. 
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Table 3.1 - Masses of pendulum components 

Sl No. Element Mass 

(g) 

1.  Upper half of pendulum body 60 

2.  Lower half of pendulum body 50 

3.  Motor 186 

4.  Counter-weight 246 

5.  Reaction wheel 40 

 

Table 3.2 - Dimensions of Pendulum Components 

Sl No. Pendulum part Dimensions (cm) 

1 Upper half 52 

2 Lower half 29 

3 Pin of revolute joint 6 

 

         

3.2   Circuitry 

 

The Reaction wheel based inverted pendulum was built in various steps. Several 

different motors and reaction wheel setups were tried and tested. The image shown 

above is the first model of the inverted pendulum. The electronic components used were 

the open source Arduino Uno development board and the MPU6050 – three axis 

accelerometer and the three axis gyroscope. A simple ball bearing was used as the 

reaction wheel in this model. Later on, counter-weights were added (as opposed to 

positioning the Arduino board there as shown in the first model). The dc motor we tried 

was a BO – Battery Operated motor (found in toy cars and the like). An L293D motor 

driver was used to drive the motor. The PID control was implemented in the 

development board with appropriate thresholds and this calculated the required 

PWM(Pulse Width Modulation) values depending on the values received from the 
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motion processing unit.  Although, the control system was working well in changing 

directions and trying to stabilize the pendulum: the torque generated was simply not 

enough to balance the pendulum. 

So, a high torque motor that ran at nearly 21000 rpm at no load condition was acquired. 

However, the motor driver L293D could not handle the amounts of current drawn by 

this motor. Another option was to use BLDC (BrushLess Direct Control) motors. But 

we were unable to find to a driver that could handle the required current and at the same 

time switch directions quickly. The motor driver RKI-1341 was rated to run a peak 

current up to 20 A for up to one minute.   

This was a cost-effective solution to the issue of finding the right motor controller. The 

motor driver and the motor circuit is powered by a 12 volt DC power supply. Using this 

motor driver, the motor was able to run without any problems. 

Some of the highest values of current were noted during starting and direction reversal 

from the extreme speeds. The steady state current noticed was between 2.87A and 3 A. 

 

Table 3.3 - Measured Values of Current During Motor Operation 

No.                                  Motor event Current (A) 

1. Start up 11 

2. Change of directions 15.5 

3. Steady State 3 

4. Brake condition 0.5 
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4  PROOF OF CONCEPT OF YAW CONTROL IN SUSPENDED BODY 

 

 

Figure 4.1 Suspended body for yaw control 

 

Satellites in space perform attitude control using reaction wheels. It uses one reaction 

wheel for each of the three axes. Unlike an inverted pendulum, this is a neutral 

equilibrium system.  

The yaw motion of a satellite is simulated using a suspended body. A reaction wheel is 

used to control the yaw. There is a micro controller on board which implements PI 

control. It takes the yaw of the structure as an input from the magnetometer and the 

output of the controller goes to the motor driver which in turn drives the motor with 

reaction wheel attached to the shaft [Meyer, et al, 2009] [Ismail and Varatharajoo]. 
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A Bluetooth module is used to receive information from a cell phone. The cell phone 

feeds the required reference orientation. The error is calculated as the difference 

between these two values and fed into the controller. By sending the yaw angle from 

the phone to the structure, the structure can mirror the smartphone’s orientation. With 

proper tuning this structure can compensate for any external disturbances. If you offset 

the structure by any angle it will turn back to the reference angle.  

The list of components involved in the construction of the model includes: 

1. DC (Direct Current) 12-volt motor 

2. Reaction wheel 

3. L293D motor driver 

4. Arduino Uno 

5. HMC5883L – 3 axis digital magnetometer 

6. HC05 – Bluetooth module 

7. Acrylate boards and strings for fabrication 

8. 1500mAh Lithium Polymer (Li-Po) 12-volt battery 

9. Smartphone with magnetometer and Bluetooth, with Arduino 2.0 application 

installed 

The various subsystems that went to making this model is as follows: 

• Mechanical subsystem: The frame was fabricated from acrylic and wood. The 

above mentioned components were arranged so that the centre of gravity of the 

system was made close to the line of suspension. 

• Electronics subsystem: The battery on board directly powers the L293D motor 

driver. The voltage regulator on the driver supplies power of 5 volts to the 

Arduino. The I2C (Inter Integrated Circuit) communication protocol was used 

to read the sensor values from the magnetometer to the Arduino. The 

smartphone sent its orientation with respect to north to the paired Bluetooth 

module using the Arduino 2.0 application at a sampling time of 100ms. This 

data was received by the Bluetooth module and sent to the microcontroller using 

UART (Universal Asynchronous Receiver Transmitter) protocol (serial 

communication). A voltage divider circuit was used to convert the Bluetooth 
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logic level from 3.3 volts to 5 volts. PWM signal was sent to the motor driver 

to drive the motor. 

• Control subsystem: PI controller was implemented on the microcontroller. The 

input to the control algorithm was in degrees of deviation from the set points. 

The controller output was given to the motor driver as PWM signal. The PI 

output was constrained to remain in the range from -255 to 255. The Integral 

term of the PI was also constrained to be in the range of -100 to 100.  
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5  COMPUTER AIDED MODEL AND DESIGN 

The suspended body (satellite) is modelled and designed in SolidWorks 2013. The 

model was made using a combination of assemblies which in turn were made of 

subassemblies and parts. It was taken into account that the design could be easily 

fabricated using the materials and component that are easily available to the team. The 

parts used in the final assembly are given in the figure below. 

 

Figure 5.1 Components of the satellite 

 

5.1   Design based on initial crude model 

The model shown is the minimalistic one we had visualized initially for the 

demonstration of attitude control using reaction wheels. This was based on the crude 

suspended body model that we had built in the previous semester. SolidWorks 2013 

was used. 

Satellite

Chassis

Top & 
bottom 
plates

Side plates 
type 1 & 2

Motor 
assembly

Outer 
casing

Armat
ure

End 
gear

Reaction 
Wheel

CPU

Battery
Micropr
ocessor

Motor 
driver & 
sensors
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Figure 5.2 First model 

 

5.2   New design 

We then decided that the simplistic design was not going to be sufficient to house all 

the components that we planned to use for the model. Another model was designed in 

SolidWorks. All the components that we were going to use were included as parts and 

the final model was assembled as shown. 

 

Figure 5.3 New model 
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5.3   Chassis 

In the new model, interlocking type plates were designed for the chassis. This was done 

because it would be easier to disassemble and reassemble the interior as and when it 

was required. During the course of our work, the battery would need to be recharged, 

adjustments may need to be made to the motor or reaction wheel, connections may need 

to be changed, working code may need to be updated multiple times. These were the 

reasons the interlocking type plates were used. 

 

Figure 5.4 The Chassis 
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5.4   Motor assembly 

 

Figure 5.5 Components of the motor 

5.5   CPU 

 

Figure 5.6 The CPU Arrangement 
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The battery, ESP, motor driver, the two sensors were all modelled individually if the 

original source was not available officially and were included in the CAD model. 

Various arrangements were tried such that the centre of gravity was coinciding with the 

geometric axis. 
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6  ADAPTIVE CONTROL 

Fixed gain controllers are designed to function within a certain range of operations of 

the plant. The constants that appear in the control law are tuned manually depending on 

desired response. For instance, in a Proportional-Integral-Derivative (PID) control, the 

integral constant is tuned to minimize steady state error. 

After world war two and at the advent of the space race, there was significant interest 

in the development of sturdy and reliable autopilot systems. This was particularly 

important in dynamical systems where the system parameters (especially mass) 

continuously changes such as a rocket, space-vehicles that need to eject components 

often or even damaged aircrafts.  

Adaptive Control was designed with this goal in mind. [Link1] shows how a model 

remote controlled (RC) aircraft continues to maintain its trajectory by varying the 

output of its motor. The Model Reference Adaptive Control was one such control 

algorithm that was designed to accomplish this. The control law of this algorithm 

contains constants that are tuned automatically depending on the solution to an 

optimization problem []. A desired reference model is used and the output of the 

physical system is made to emulate the reference model`s response by tuning the gains 

in a manner described above. 

 

Figure 6.1 Block diagram of MRAC 

Apart from autopilot control systems, Adaptive control is currently being applied to a 

wide spectrum of applications including automotive, aerospace, process industries, bio-
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medical applications etc. [Kilic et al. 2016], explains the use of MRAC for the speed of 

induction motors, where a radial basis function neural. [Sami et al. 2016], presents the 

use of an L1 adaptive control design process for automatic tuning of control parameters 

for the desired performance and robustness. [Kyaw and Gavrilov 2016] describes a fault 

tolerant sliding mode attitude control for flexible space-crafts, while [Han et. al. 2015] 

explains the use of adaptive control for attitude control during actuator failure. 

[Harmonie et al. 2017] speaks of using robust adaptive attitude control during payload 

deployment for microsatellites. The Luzi adaptive control algorithm is also described 

in this work.  

MRAC has been applied for unconventional applications like impedance control for 

human robot interaction [Bakur et. al. 2016]. Further, [Jaeyoung et al. 2017] emphasizes 

the applicability of MRAC in thermal management of automotive fuel cells. Vector 

controlled induction motor applications using MRAC with rotor flux and back EMF 

methods have explained in [Munshi and Choudhuri 2016].  Taking a step further, in 

[Wei and Wang 2015] the application of MRAC for fractional order linear systems have 

been explained. Another interesting study in ‘road following applications’ between 

vehicles have been studied in [Hassan and Sudhin 2014] using MRAC. MRAC is also 

finding application in cancer treatment as explained in [Salami and Salamci 2016]. 

 

6.1   Methods of implementation of Model Reference Adaptive Control (MRAC) 

There are multiple ways to implement the Model Reference Adaptive Control. The most 

basic method being the MIT rule [Adrian et al. 2008] [Ranjan and Rai 2012] which was 

developed jointly by ‘’ and ‘’, who were both professors from the ‘’ department of MIT 

in the 1960s. [Coman and Boldisor 2014 and 2013] demonstrates the application of this 

algorithm for accomplishing MRAC. Another interesting method for implementing this 

control is called design by Lyapunov approach. [Ampsefidis et al. 1993] and [Black et 

al. 2014] provide details on the design of MRAC depending upon a-priori information. 

A comparative study between design by MIT rule and Lyapunov approach is provided 

in [Pankaj et al. 2011] for the reader`s reference. The application of the Lyapunov 

approach for other adaptive control systems are discussed in [Misbawu et al. 2014]. 
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6.1.1   The MIT rule 

The MIT rule essentially implements a mathematical condition that reduces the error 

between the reference model and the physical model. 

If 𝐽 represents the error between the reference and the physical model: 

𝐽(𝜃1, 𝜃2 …𝜃𝑁) = | 
𝑒2

2
| 

Where 𝑒(𝑡) = 𝑦𝑚(𝑡) − 𝑦(𝑡) and 𝜃1, 𝜃2 …𝜃𝑁 represent the gains in the control law 

In order to achieve the condition  

𝑑𝐽

𝑑𝑡
=  

𝜕𝐽

𝜕𝑡
+

𝜕𝐽

𝜕𝜃

𝑑𝜃

𝑑𝑡
 

If the second term resulting from the chain rule is sufficiently large, the total time 

derivative of the model error will be made negative. For this,  

𝑑𝜃

𝑑𝑡
=  −𝛾

𝜕𝐽

𝜕𝜃
 

So that 

𝑑𝐽

𝑑𝑡
=  

𝜕𝐽

𝜕𝑡
− 𝛾 (

𝜕𝐽

𝜕𝜃
)
2

 

𝜕𝐽

𝜕𝜃
= 2𝑒

𝜕𝑒

𝜕𝜃
 

𝑑𝜃

𝑑𝑡
= −2𝛾𝑒

𝜕𝑒

𝜕𝜃
  

Assuming that the transfer function in the reference model is 𝐺𝑟𝑒𝑓 and the plant to be 

controlled is 𝐺𝑝, the error can be expressed as: 

𝑒(𝑡) = 𝑘𝐺𝑝(𝜃(𝑡). 𝑢𝑐(𝑡)) − 𝑘0𝐺𝑟𝑒𝑓(𝜃(𝑡). 𝑢𝑐(𝑡)) 

𝜕𝑒

𝜕𝜃
= 𝑘. 𝐺𝑝(𝑢𝑐(𝑡)) =

𝑘

𝑘0
. 𝑦𝑚(𝑡) 
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∴  
𝑑𝜃

𝑑𝑡
= −𝛾𝑛. 𝑦𝑚(𝑡). 𝑒(𝑡, 𝜃) 

Where 𝛾𝑛 = 2 𝛾. (
𝑘

𝑘0
)  is called the adaptation gain. 

Another modification that is used is normalization of the MIT rule using the following 

formula [Jain and Nigam 2013]: 

𝑑𝜃

𝑑𝑡
= −

𝛾𝑒
𝜕𝑒
𝜕𝜃

𝛼 + (
𝜕𝑒
𝜕𝜃

)
2 

Substituting for 
𝜕𝑒

𝜕𝜃
 

𝑑𝜃

𝑑𝑡
= −

𝛾𝑛𝑒𝑦𝑚

𝛼 + (𝑦𝑚)2
  

Where, 𝑦𝑚 is the reference model output and 𝛾𝑛and 𝛼 are constants. This modification 

is done to avoid division by zero in the final integration step of the adaptive control 

algorithm and is found to work satisfactorily. This is also referred to as the normalized 

version of the MIT rule.   

The derivative value of the gain is computed using simple the system outputs in 

Simulink MATLAB and is integrated to obtain the gain values in real time. The gain 

values converge to a specific value depending on the response of the reference model.  

Now that the diversity of the applications of MRAC has been established, and the 

simplicity with which it can be implemented, it can be concluded that MRAC is an 

extremely reliable technique for dynamical systems that needs to function adaptively. 

Hence, the current study is focused on implementing the MRAC law using the MIT 

rule for the attitude control system of a suspended body oriented by a single reaction 

wheel.  
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7  SIMULATION OF ATTITUDE CONTROL 

Simulink in MATLAB is a data-flow type programming language that was originally 

built with control systems in mind. Simulink offers simple arithmetic operations as well 

as complex domain specific functions in digital signal processing, control system 

design and design optimization function. The easiness of setting up the control system 

and calculating system responses prompted the use of this programming environment 

7.1   The Control System Diagram 

The main control system diagram consists of the following blocks as shown below: 

i. PID controlled reference model 

ii. Controlled satellite model 

iii. Adaptive controller 

iv. Input conditioning 

v. Summation blocks and scopes 

vi. Set-point input block 

The constituent blocks and operations of each of the blocks in the main control system 

will be explained. 

 

Figure 7.1 Complete Simulink Control System Diagram 
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7.2   Input conditioning block 

The input conditioning block is a simple operation used to find the remainder of the 

setpoint input or the desired angle input when it is divided by 2𝜋. The block diagram 

for the block is given by: 

 

Figure 7.2 Input conditioning block 

7.3  Controlled Reference model 

The controlled reference model is the desired system model with a Proportional-

Integral-Derivative(PID) control implemented.  Depending on the power of the actuator 

(motor), the reference model will maintain at the set-point angle given by the user. The 

reference transfer function was obtained after dynamic modelling of the system using 

free-body diagrams assuming dynamic equilibrium 

 

Figure 7.3 PID controlled reference system 
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Figure 7.4 Free body diagram of chassis and reaction wheel in dynamic equilibrium 

Hence, the equations obtained from these diagrams are: 

𝐼2(𝜃2̈ + 𝜃1̈) + 𝑏2𝜃1̇ + 𝑇𝑐 = 0 

(𝐼1 + 𝐼2)𝜃1̈ + 𝐼2𝜃2̈ + (𝑏1 + 𝑏2)𝜃1̇ + 𝐺𝜃1 = 𝑇 

The state space equations can be derived using the substitution 

𝑢1 = 𝜃1̇ 

And 𝑢2 = 𝜃2̇ 

Making the substitutions as mentioned above: 

𝐼2(𝑢1̇ + 𝑢2̇) + 𝑏2𝑢1 = −𝑇 

(𝐼1 + 𝐼2)𝑢1̇ + 𝐼2𝑢2̇ + (𝑏1 + 𝑏2)𝑢1 +  𝐺𝜃1 = 𝑇 

The system can be written in the form: 

[

0 𝐼2 0 𝐼2
1 0 0 0
0 𝐼1 + 𝐼2 0 𝐼2
0 0 1 0

]

[
 
 
 
𝜃1̇

𝑢1̇

𝜃2̇

𝑢2̇]
 
 
 

+ [

0 𝑏2 0 0
0 −1 0 0
𝐺 𝑏1 + 𝑏2 0 0
0 0 0 −1

] [

𝜃1

𝑢1

𝜃2

𝑢2

] = [

−1
0
1
0

] 

 

𝑋 ̇ =  

[
 
 
 
𝜃1̇

𝑢1̇

𝜃2̇

𝑢2̇]
 
 
 

=  [

0 1 0 0
−17.42 −17.42 0 0

0 0 0 1
17.42 4.922 0 0

] [

𝜃1

𝑢1

𝜃2

𝑢2

] + [

0
3484

0
−4734

] 𝑇 
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𝑦 = [1 0 0 0] [

𝜃1

𝑢1

𝜃2

𝑢2

] + 0. 𝑇 

This is the state space form of the governing differential equations. Using the function 

tf() in MATLAB, the transfer function for this system between the torque T and the 

angular displacement of the chassis 𝜃1 is given by; 

𝜃1(𝑠)

𝑇(𝑠)
=

3484

𝑠2 + 17.42𝑠 + 17.42
 

This is the transfer function that is controlled using the PID controller and is referred to 

as tf_ref in the block diagram depicted earlier. 

7.4  Adaptive Controller 

The adaptive controller block consists of two smaller blocks. The first block calculates 

the factor 𝑦𝑚(𝑡) and the remaining block computes the value of 𝑘1and 𝑘2 after the 

integration and after calculating the control law sends it as feedback to the satellite sub-

system. 

 

 

Figure 7.5 First layer of sub-system 
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Figure 7.6 Sub-system for the time-derivative of gains 

 

Figure 7.7 Subsystem for the integration of time derivatives of gains 

 

7.5  Controlled Satellite model 

The Controlled satellite model is the block representing the physical system that was 

modelled in SOLIDWORKS 2013. The 3D model contains the mass and inertia 

properties of all the mechanical (chassis) and the electronics sub-systems (CPU) that 

were idealized in the dynamic model described in section b). This model receives a 

single input – a torque input at the reaction wheel revolute element and the chassis 
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position obtained from a sensor reading obtained from the chassis block of the model 

as shown below. For more details about the model, please refer to the CAD modelling 

sub-section of the report. The SOLIDWORKS file was exported as a second generation 

SimMechanics file, which was imported into Simulink using the command 

smimport(‘filename’).  

 

Figure 7.8 Satellite sub-system 

 

7.6   The Motor Sub-system 

The motor sub-system is meant to simulate the features of a 12V DC motor that is to be 

used in the physical model. The model was available in MATLAB as an example model 

and the remaining work was to obtain the motor parameters by performing a motor 

characterization. Although a data-sheet could have been procured from the internet, as 

these values indicated the as-purchased values of the motor parameters. Hence, to 

determine the current parameters, the motor characterization was done which has been 

explained in section 8. 
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Figure 7.7 Controlled DC motor sub-system 
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8  MOTOR CHARACTERIZATION 

Motors form an essential part of many electro-mechanical systems. They are one of the 

most common actuators available that convert electrical energy into rotational energy 

in the form of angular velocity and torque. When the system under study has to be 

subjected to a control system, perhaps to be simulated in a program, a system-level 

transfer function that characterizes the motor is convenient [Seaton]. Apart from this 

advantage from a control systems perspective, certain motor parameters such as 

efficiency, point of stall may need to be recalculated to decide if the motor can perform 

the expected task[Harington and Kroninger 2013]. The term ‘characterization’ can also 

be used in contexts such as propeller characterization. 

The mathematical model of the motor in the form a transfer function is pivotal in studies 

were efficient compensators have to be designed [Anguluri 2014], [Rose et al. 2014] 

where the moment of inertia and friction co-efficient were experimentally discovered, 

[Niekerk et. al 2015] for UAVs and analyzing the effects of motor characterization on 

hybrid vehicles as in [Mehdrad 2003]. 

The complete system-level transfer function [Seaton] of the DC motor is of the form: 

𝜔

𝑉𝑎
=

𝐾

(𝐽. 𝐿𝑎)𝑠2 + (𝐽. 𝑅𝑎 +   𝑏. 𝐿)𝑠 + 𝑏. 𝑅𝑎 + 𝐾2
 

Where 𝜔 is the angular velocity, 𝐾 is the motor constant, 𝐽 is the inertia of the motor, 

𝐿𝑎is the inductance of the motor, 𝑅𝑎 is the armature resistance and 𝑏 is the friction co-

efficient. Within the scope of this project, the friction co-efficient is considered to be 

negligible []. Hence, the modified transfer function is of the form: 

𝜔

𝑉𝑎
=

𝐾

(𝐽. 𝐿𝑎)𝑠2 + (𝐽. 𝑅𝑎 +  𝐿)𝑠 + 𝐾2
 

The following methods as per [Seaton] was used to measure the armature resistance 

and the inductance of the dc motor: 

Keeping aside the dynamics of the motor, the motor is essentially an electrical circuit. 

Hence, clamping the motor shaft and measuring the current flowing through the system 

for an applied voltage can be used to measure the resistance of the motor using Ohm`s 

law: 
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𝑉𝑎 = 𝐼𝑎𝑅𝑎𝑟𝑚 

The resistance was measured for six different voltage values for six different armatures. 

The voltage was applied using a DC power supply.  

 

Figure 8.1 Setup for measurement of armature resistance 

 

Table 8.1 Observations for measurement of armature resistance 

 Voltage Current Resistance 

(Ohm`s law) 

1    0.14     7.142 

2 0.23 8.695 

3 0.33 9.090 

4 0.41 9.756 

5 0.48 10.416 

6 0.55 10.909 

Average Resistance  9.335 

 

The resistances were measured for different rotor positions and the resistance was 

averaged over all the values: 

𝑅𝑎 = 𝑅𝑎𝑟𝑚 = 9.685Ω 
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Next, the inductance of the motor armature is measured. As the motor windings consist 

of both resistive and inductive elements, there is a time constant associated with the rise 

and decay of current within the circuit. The circuit used was of the following form: 

 

Figure 8.2 Circuit for measurement of inductance 

The equipment used were Agilent 13220A, 20 MHz function/arbitrary waveform 

generator and Agilent technologies, InfiniVision DSO-X 2002A oscilloscope. 

 

Figure 8.3 Setup fot measurement of inductance 

The waveform obtained on the oscilloscope: 

 

Figure 8.4 Waveform obtained 

Assuming that the total time of decay was approximately equal to 5 time constants: 

Function Generator 

Oscilloscope 

DC motor 

100 Ohms resistor 
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5𝐿

𝑅𝑒𝑞
= 500𝜇𝑠 

𝑅𝑒𝑞 = 𝑅𝑎𝑟𝑚 + 100 

∴ 𝐿 = 10.9685𝑚𝐻 

Further, the no-load characteristics of the dc motor were measured. This was done using 

the same DC power supply used to measure the armature resistance. Simultaneously, a 

laser tachometer was used to measure the RPM of the motor at each data point. The 

resulting voltage-RPM characteristics are plotted below. Using the formula: 

𝑃 =  
2𝜋𝑁𝑇

60
 

The values of torque at each of the data points were also calculated 

 

Figure 8.5 RPM and Torque Curves 

 

Finally, the motor constant was calculated. The motor constant is given by: 

𝑘 =  
𝑉 − 𝑉𝐵𝐸𝑀𝐹

𝜔
 

The back EMF 𝑉𝐵𝐸𝑀𝐹is calculated by multiplying no-load current and armature 

resistance and dividing by the angular velocity at that point. This operation was carried 

out at all the data points and the average value was calculated. 

𝐾 = 0.00158 
𝑣𝑜𝑙𝑡𝑠 − 𝑠

𝑟𝑎𝑑
 



35 

 

Therefore, the transfer function obtained is: 

𝜔

𝑉𝑎
=

0.00158

(0.0000057)𝑠2 + (0.01566)𝑠 + 0.00000249
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9  PHYSICAL MODEL 

 

 

Figure 9.1 Working model 
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9.1   Fabrication of the chassis 

Based on the CAD model, the suspended body is made using cast acrylic sheets. An 

interlocking type walls is to be manufactured. Hence, the CAD file is converted to a 

CoralDRAW file and fed into a CNC laser cutter.  

 

Figure 9.2 Individual components of the chassis 

These toothed walls can be easily snapped on to each other to complete the chassis of 

the suspended body. 

 

Figure 9.3 Assembled chassis 
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9.2   Circuitry 

The electronic components used in the satellite are connected with one another using a 

circuit board. The circuit board is made by soldering berg strips onto a copper clad 

general purpose PCB. Hence the required electronic components can simply be snapped 

onto the circuit. Provision has been given to connect jumper wires using additional berg 

strips. 

 

 

Figure 9.4 Circuit Board 

 

9.2.1   L29810 Motor Driver 

The LN298 is a high voltage, high current, dual full-bridge motor driver designed to 

accept standard TTL logic levels and drive inductive loads such as relays, solenoids, 

DC and stepping motors. The unit used in this project has an inbuilt heat sink and hence 

is equipped to handle heating due to high current situations like direction change. 



39 

 

 

Figure 9.5 L29810 Motor Driver 

9.2.2   DC Motor 

A 12V D motor is used. Refer to Section 8 for specification of the motor. 

 

Figure 9.6 DC Motor 

9.2.3   11.1V Li-Po Battery 

A Lithium-Polymer (Li-Po) Battery is used as the power source for motor and 

microcontroller. It is capable of giving instantaneous discharge current up to 55A. It 

has a very light weight and is small in size compared to Ni-Cd and Lead acid batteries. 

It has a long life without losing charging capacity. It weighs 167 g. 
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Figure 9.7 Battery 

9.2.4   Sensors 

MPU 6050 

The InvenSense MPU-6050 sensor contains a MEMS accelerometer and a MEMS gyro 

in a single chip. It is very accurate, as it contains 16-bits analog to digital conversion 

hardware for each channel. Therefor it captures the x, y, and z channel at the same time. 

The sensor uses the I2C-bus to interface with the NodeMCU micro. 

 

Figure 9.8 Sensors Used 

HMC 5883L 

This is a breakout board for Honeywell’s HMC5883L, a 3-axis digital compass. 

Communication with the HMC5883L is simple and all done through an I2C interface. 

There is no on-board regulator, so a regulated voltage of 2.16-3.6VDC should be 

supplied. 
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9.2.5   ESP 8266 – Node MCU 

An Arduino Uno development board was used in the inverted pendulum and the initial 

model of satellite. In this model, a NodeMCU was used as the controller. 

The NodeMCU has an ESP8266 Wi-Fi SoC from Espressif Systems. The firmware uses 

the Lua scripting language. It can also be flashed with firmware that supports 

interfacing with the Arduino IDE. 

The NodeMCU has several advantages over the Arduino Uno. Firstly, it is inexpensive. 

It has the ESP8266 which carries an inbuilt WiFi module which can be used to 

wirelessly communicate between the NodeMCU and devices connected to the same 

network like smartphones or computers for uploading code, and sending data. It has 16 

General Purpose Input/Output (GPIO) pins. The primary advantage is the high 

frequency clock (80MHz) and the large storage space (4 MB). [igrr, et al, 2017] 

 

 

Figure 9.9 NodeMCU pin definition diagram 
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10  IMPLEMENTATION ON HARDWARE 

10.1  Implementation of PID 

𝑂𝑢𝑡𝑝𝑢𝑡 =  𝐾𝑃𝑒(𝑡) + 𝐾𝐼 ∫𝑒(𝑡)𝑑𝑡 + 𝐾𝐷

𝑑

𝑑𝑡
𝑒(𝑡) 

Equation 10.1 Standard PID Equation 

 

Where, 𝑒 = 𝑆𝑒𝑡𝑝𝑜𝑖𝑛𝑡 − 𝐼𝑛𝑝𝑢𝑡 
error = angle - refAngle; 

error = ((int(error*100)+18000+36000)%36000-18000)/100.0; 

10.1.1  Calculation for the input to PID 

The error needed to be mapped between -180 degrees and 180 degrees. This is required 

to avoid the 0 to 360 discontinuity when it reaches the Setpoint (refAngle). This ensures 

that the error is centered around zero at the vicinity of the Setpoint and is 

mathematically consistent for PID calculation at all values of the setpoint. The error is 

multiplied and divided with 100 because the modulo function only works with the 

datatype ‘int’. 

 

  errsum += error; \\Discrete Integration 

  derror = error - preverror;\\ Discrete Differentiation 

  preverror = error; 

 

 

10.1.2  Calculating integral and derivative terms 

Due to constant time interval between successive PID calculations (~10 milliseconds), 

the discrete integration and differentiation can be reduced to summation and backward 

differencing. 

 
  if(errsum>1500){ 

    errsum=1500; 

  } 

  else if(errsum<-1500){ 

    errsum=-1500; 

  } 
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Capping of integral term 

This is required so that the integral term does not drastically increase when debugging. 

 
  float pid=kp*error + ki*errsum + kd*derror; 

 

Calculating PID 

 

  if(pid>0){ 

    if(pid>1023){ 

      pid=1023;\\Saturating PID 

    } 

    analogWrite(4,pid); 

    analogWrite(5,0); 

  } 

  else{ 

    if(pid<-1023){ 

      pid=-1023;\\Saturating PID 

    } 

    analogWrite(5,-1*pid); 

    analogWrite(4,0); 

  } 

This snippet of code Saturates PID output at maximum and minimum values of PWM 

and direct mapping of PID output to the PWM to drive the motors. 

 

 

10.2  Reading from Magnetometer 

A HMC883L magnetometer is used to obtain the absolute orientation of the system 

with respect to magnetic north. The sensor gives raw magnetic field strength in its own 

axis.  The sensor has a full-scale range of ±8 Guass and a resolution of up to 5 milli-

Gauss. Communication with the HMC5883L is done through an I2C interface using the 

Wire library of Arduino. 

 

The yaw angle of the system is calculated as arctan of the ratio between x axis and y 

axis strengths where the magnetometer’s xy-plane is kept horizontal . Due to low 

magnetic declination of the testing location, the calculation of declination correction is 

omitted. The yaw angle is in the range of 0 to 360 degrees from due north. For the 

complete program code, please refer Appendix C. 
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10.3  Online Tuning of PID Parameters Using Blynk 

Blynk is an Internet of Things platform with a mobile application builder that allows to 

visualize sensor data and control electronics remotely within the same network. In our 

case, blynk was used to remotely connect to the onboard microcontroller via a custom 

TCP-IP protocol. The PID parameters are tuned to from the app with the assistance of 

real-time plot of the orientation. The Blynk support package for ESP8266 is used on 

the microcontroller. An interface is made on the app for tuning using sliders. For the 

complete program code, please refer Appendix C. 

 

 

 
Figure 10.1 Interface on the Blynk App 
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10.4  WiFi Communication With Smartphone 

The Setpoint can be changed by remotely sending it via wifi to the microcontroller on 

the cube. To accomplish this, User Datagram Protocol(UDP) was chosen because of its 

high speed. UDP can deliver packets faster than TCP with less delay. In this case, the 

microcontroller is the UDP server. The Wifi client that transmitted the ‘refAngle’ was 

a smartphone app-HyperIMU. This app transmitted the phone orientation via UDP 

protocol and this was used as a Setpoint for the system hence, mirroring the smartphone. 

For the complete program code, please refer Appendix C. 
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10.5  Wifi Communication with Simulink 

 

In order to implement adaptive control by processing in Simulink itself, a 

communication channel needed to be setup between the microcontroller and Simulink.  

For this, Simulink Desktop Real-Time toolbox was used. ‘Stream Input’ block was used 

to receive current orientation of the physical model. ‘Stream Output’ block was used to 

send PWM signals to drive the motor. 

These blocks used UDP protocol to communicate. In Simulink, there is no access to 

buffers of the UDP stream and are automatically taken care of. 

The code receives the input buffer, typecasts it to ‘int’ datatype and assigns it to ‘pwm’ 

variable.  

 

    char toSend[255]; 

    String(String(angle)+"\n").toCharArray(toSend,255);     

    Serial.printf("%s\n", toSend); 

    Udp.beginPacket(Udp.remoteIP(), 8820); 

    Udp.write(toSend); 

    Udp.endPacket(); 

Figure 10.2 HyperIMU App 

Interface 
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The above snippet of code converts ‘angle’ into a ‘string’ datatype and adds it to the 

output buffer. For the complete program, refer Appendix D. 

 

 

  Figure 10.3 Simulink block diagram 
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11  RESULTS 

Some of the most important performance metrics of any control systems are the rise 

time, the settling time and the steady state error. The variation of these three metrics is 

observed with respect to the adaptation gain. The rise time is defined as the time taken 

to reach 90% of the set-point from 10% of the set-point. The settling time is the time 

taken by the system to reach between 2% and 5% of the set-point value. Finally, the 

steady state error is the amplitude of oscillations sustained by the system as time tends 

to infinity. 

The settling times and rise times were plotted for adaptation gains ranging from 0 to 6 

with steps of 0.25. In both cases, the values saturated towards a specific value on 

increasing the adaptation gain. 

However, the changes in adaptation gain did not have any effect on the steady state 

error as represented by the erratic changes observed in Figure.

 

Figure 11.1 Graphs of Setting Time and Rise Time vs Adaptation Gain 

 

Figure 11.2 Steady State Error vs Adaptation Gain 
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Figure 11.3 Response of MRAC for different Gamma values 

Further, the response of the MRAC implemented physical model was measured for 

different values of adaptation gains. It is observed that for low values of adaptation 

gain(𝛾), the response is noisy and has longer rise times. The  value 𝛾=3, seems to most 

accurately follow the reference system`s response. This suggests that for a given 

system, there might be a specific value of adaptation gain at which it best resembles the 

controlled reference model. 

Finally, the MIT implementation of MRAC was compared with the Lyapunov method 

of implementing the same control system. The Lyapunov method relies on the use of 

the output of the system in the gain updation parameters unlike the  MIT rule. It is 

widely acknowledged that the Lyapunov approach is better than the MIT rule, however, 

in the simulations completed, the model implementing the MIT rule appears to settle 

faster and have lesser off-shoot. 
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The following images depict the responses for the reference system model, MRAC-

MIT and MRAC-Lyapunov rule for comparison. 

 

Figure 11.4 System responses for Gamma = 1, gamma = 2 

  

Figure 11.5 System Responses for Gamma = 3, Gamma = 4 
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12  FUTURE SCOPE OF WORK 

There are several different kinds of performance metrics. From a computational 

perspective, the CPU-time used for controlling the system is relevant. Another 

important metric is the actuator energy that can also have a dependence on the 

adaptation gain. Both of these would be highly relevant where extremely spartan and 

energy-efficient designs such as in aerospace. 

An interesting study would be to program a neural network with the performance 

metrics as inputs to the first layer and the final year calculating the adaptation gain. The 

simulated experiment performed above already provides several data-sets.  

MRAC should also be compared with more generic evolutionary optimization 

algorithms like Particle Swarm Optimization, Genetic Algorithms etc. along the same 

metrics.  

It is envisioned to derive a composite index function by assigning weights to different 

performance metrics specified above. The adaptive control has to be implemented in 

such fashion that the error will be derived from this index function for each response in 

real time and the adaptive tuning will arrive at the most ‘appropriate combination of 

gains’. This way, the weights of the index function can be altered to make the system 

more instinctive or sensitive towards a specific performance metric. 

As depicted in the results section, the MIT rule appears to perform better than the 

Lyapunov rule contrary to popular opinion. Hence, a study about the specificity of 

MRAC towards the system to favour one particular kind of implementation would 

prove relevant.  

Also, it was noticed that during the hardware implementation, as the PID output 

saturates, there is less chance for the system recovering from that state. This provides 

an interesting area for investigation. 
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LIST OF APPENDICES 

Appendix – A 

 

DC Motor Specifications: 

No. Property Value 

1. Dimensions 𝜙42.3 × 67𝑚𝑚 

2. Shaft diameter 𝜙5.005 𝑚𝑚 

3. Input voltage 18 volts 

4. No load speed 20950 rpm 

5. No load current 2.9 A 

6. Weight 186 g 
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Appendix - B 

Stream input block parameters: 

 

 

Appendix – C 
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Program MPtest2 

 
#define BLYNK_PRINT Serial 

#include <Wire.h> 

#include <ESP8266WiFi.h> 

#include <BlynkSimpleEsp8266.h> 

#include <WiFiUdp.h> 

#define Addr 0x1E               // 7-bit address of HMC5883 compass 

 

const char* ssid = "Dendb"; 

const char* password = "csnitk123"; 

 

char auth[] = "4906ef7023834762b123af1bf52f975e"; 

 

WiFiUDP Udp; 

unsigned int localUdpPort = 4210;  // local port to listen on 

char incomingPacket[255];  // buffer for incoming packets 

char  replyPacekt[] = "Hi there! Got the message :-)";  // a reply 

string to send back 

 

//String inputString = "";     // a string to hold incoming data 

float refAngle=180; 

double angle=180.0, error=0,errsum=0, preverror=0, derror = 0; 

float kp=0, ki=0.0, kd = 0; 

 

BLYNK_WRITE(V1) 

{ 

  kp = param.asFloat()/10; // assigning incoming value from pin V1 to 

a variable 

  Blynk.virtualWrite(5, kp); 

} 

BLYNK_WRITE(V2) 

{ 

  ki = param.asFloat()/100; // assigning incoming value from pin V1 to 

a variable 

  Blynk.virtualWrite(6, ki); 

} 

BLYNK_WRITE(V3) 

{ 

  kd = param.asFloat()/10; // assigning incoming value from pin V1 to 

a variable 

  Blynk.virtualWrite(7, kd); 

} 

 

void setup() { 

  Blynk.begin(auth, ssid, password); 

//  Serial.printf("Connecting to %s ", ssid); 

//  WiFi.begin(ssid, password); 

//  while (WiFi.status() != WL_CONNECTED) 

//  { 

//    delay(500); 

//    Serial.print("."); 

//  } 

//  Serial.println(" connected"); 

 

  Udp.begin(localUdpPort); 
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  Serial.printf("Now listening at IP %s, UDP port %d\n",   

WiFi.localIP().toString().c_str(), localUdpPort); 

   

  // put your setup code here, to run once: 

  pinMode(4,OUTPUT); 

  pinMode(5,OUTPUT); 

  Serial.begin(9600); 

  Wire.begin(12,14); 

   

  // Set operating mode to continuous 

  Wire.beginTransmission(Addr);  

  Wire.write(byte(0x02)); 

  Wire.write(byte(0x00)); 

  Wire.endTransmission(); 

} 

 

void loop() { 

   

  int time = micros(); 

  Blynk.run(); 

   

  int packetSize = Udp.parsePacket(); 

  if (packetSize) 

  { 

    // receive incoming UDP packets 

    Serial.printf("Received %d bytes from %s, port %d\n", packetSize, 

Udp.remoteIP().toString().c_str(), Udp.remotePort()); 

    int len = Udp.read(incomingPacket, 255); 

    if (len > 0) 

    { 

      incomingPacket[len] = 0; 

    } 

    Serial.printf("UDP packet contents: %s\n", incomingPacket); 

  Udp.beginPacket("192.168.43.196", 5555); 

  Udp.write(incomingPacket); 

  Udp.endPacket(); 

  int i=0; 

  String inputString = ""; 

  while(incomingPacket[i]!=',') 

  { 

    inputString += (char)incomingPacket[i++];     

  } 

  refAngle = inputString.toFloat(); 

   

  Serial.println(refAngle); 

  } 

   

  //Compass 

  int x, y, z; 

 

  // Initiate communications with compass 

  Wire.beginTransmission(Addr); 

  Wire.write(byte(0x03));       // Send request to X MSB register 

  Wire.endTransmission(); 

 

  Wire.requestFrom(Addr, 6);    // Request 6 bytes; 2 bytes per axis 

  if(Wire.available() <=6) {    // If 6 bytes available 

    x = Wire.read() << 8 | Wire.read(); 
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    z = Wire.read() << 8 | Wire.read(); 

    y = Wire.read() << 8 | Wire.read(); 

  } 

  // If compass module lies flat on the ground with no tilt, 

  // just x and y are needed for calculation 

  if(x > 10000) x-=65536; 

  if(y > 10000) y-=65536; 

  if(z > 10000) z-=65536; 

  float  heading=atan2(x, y)/0.0174532925; 

  if(heading < 0) heading+=360; 

  //heading=360-heading; // N=0/360, E=90, S=180, W=270  

 

   

  angle = heading; 

  Serial.print(angle); 

  Serial.print('\t'); 

  error = angle - refAngle; 

  error = ((int(error*100)+18000+36000)%36000-18000)/100.0; 

  errsum += error; 

  derror = error - preverror; 

  preverror = error; 

  if(errsum>1500){ 

    errsum=1500; 

  } 

  else if(errsum<-1500){ 

    errsum=-1500; 

  } 

   

  float pid=kp*error + ki*errsum + kd*derror; 

   

  if(pid>0){ 

    if(pid>900){ 

      pid=1023; 

    } 

    analogWrite(4,pid); 

    analogWrite(5,0); 

  } 

  else{ 

    if(pid<-900){ 

      pid=-1023; 

    } 

    analogWrite(5,-1*pid); 

    analogWrite(4,0); 

  } 

  Serial.print(pid); 

  Serial.print('\t'); 

  Serial.println(error); 

   

  delay(8); 

 

  Blynk.virtualWrite(8, error); 

  //Blynk.virtualWrite(9, pid); 

 } 

 

 

#define BLYNK_PRINT Serial 

#include <Wire.h> 

#include <ESP8266WiFi.h> 
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#include <BlynkSimpleEsp8266.h> 

#include <WiFiUdp.h> 

#define Addr 0x1E               // 7-bit address of HMC5883 compass 

 

const char* ssid = "Dendb"; 

const char* password = "csnitk123"; 

 

char auth[] = "4906ef7023834762b123af1bf52f975e"; 

 

WiFiUDP Udp; 

unsigned int localUdpPort = 4210;  // local port to listen on 

char incomingPacket[255];  // buffer for incoming packets 

char  replyPacekt[] = "Hi there! Got the message :-)";  // a reply 

string to send back 

 

//String inputString = "";     // a string to hold incoming data 

float refAngle=180; 

double angle=180.0, error=0,errsum=0, preverror=0, derror = 0; 

float kp=0, ki=0.0, kd = 0; 

 

BLYNK_WRITE(V1) 

{ 

  kp = param.asFloat()/10; // assigning incoming value from pin V1 to 

a variable 

  Blynk.virtualWrite(5, kp); 

} 

BLYNK_WRITE(V2) 

{ 

  ki = param.asFloat()/100; // assigning incoming value from pin V1 to 

a variable 

  Blynk.virtualWrite(6, ki); 

} 

BLYNK_WRITE(V3) 

{ 

  kd = param.asFloat()/10; // assigning incoming value from pin V1 to 

a variable 

  Blynk.virtualWrite(7, kd); 

} 
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Appendix - D 

 

Program simu 

 
 

void setup() { 

  Blynk.begin(auth, ssid, password); 

//  Serial.printf("Connecting to %s ", ssid); 

//  WiFi.begin(ssid, password); 

//  while (WiFi.status() != WL_CONNECTED) 

//  { 

//    delay(500); 

//    Serial.print("."); 

//  } 

//  Serial.println(" connected"); 

 

  Udp.begin(localUdpPort); 

  Serial.printf("Now listening at IP %s, UDP port %d\n", 

WiFi.localIP().toString().c_str(), localUdpPort); 

   

  // put your setup code here, to run once: 

  pinMode(4,OUTPUT); 

  pinMode(5,OUTPUT); 

  Serial.begin(9600); 

  Wire.begin(12,14); 

   

  // Set operating mode to continuous 

  Wire.beginTransmission(Addr);  

  Wire.write(byte(0x02)); 

  Wire.write(byte(0x00)); 

  Wire.endTransmission(); 

} 

 

void loop() { 

   

  int time = micros(); 

  Blynk.run(); 

   

  int packetSize = Udp.parsePacket(); 

  if (packetSize) 

  { 

    // receive incoming UDP packets 

    Serial.printf("Received %d bytes from %s, port %d\n", packetSize, 

Udp.remoteIP().toString().c_str(), Udp.remotePort()); 

    int len = Udp.read(incomingPacket, 255); 

    if (len > 0) 

    { 

      incomingPacket[len] = 0; 

    } 

    Serial.printf("UDP packet contents: %s\n", incomingPacket); 

  Udp.beginPacket("192.168.43.196", 5555); 

  Udp.write(incomingPacket); 

  Udp.endPacket(); 

  int i=0; 

  String inputString = ""; 

  while(incomingPacket[i]!=',') 
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  { 

    inputString += (char)incomingPacket[i++];     

  } 

  refAngle = inputString.toFloat(); 

   

  Serial.println(refAngle); 

  } 

   

  //Compass 

  int x, y, z; 

 

  // Initiate communications with compass 

  Wire.beginTransmission(Addr); 

  Wire.write(byte(0x03));       // Send request to X MSB register 

  Wire.endTransmission(); 

 

  Wire.requestFrom(Addr, 6);    // Request 6 bytes; 2 bytes per axis 

  if(Wire.available() <=6) {    // If 6 bytes available 

    x = Wire.read() << 8 | Wire.read(); 

    z = Wire.read() << 8 | Wire.read(); 

    y = Wire.read() << 8 | Wire.read(); 

  } 

  // If compass module lies flat on the ground with no tilt, 

  // just x and y are needed for calculation 

  if(x > 10000) x-=65536; 

  if(y > 10000) y-=65536; 

  if(z > 10000) z-=65536; 

  float  heading=atan2(x, y)/0.0174532925; 

  if(heading < 0) heading+=360; 

  //heading=360-heading; // N=0/360, E=90, S=180, W=270  

 

   

  angle = heading; 

  Serial.print(angle); 

  Serial.print('\t'); 

  error = angle - refAngle; 

  error = ((int(error*100)+18000+36000)%36000-18000)/100.0; 

  errsum += error; 

  derror = error - preverror; 

  preverror = error; 

  if(errsum>1500){ 

    errsum=1500; 

  } 

  else if(errsum<-1500){ 

    errsum=-1500; 

  } 

   

  float pid=kp*error + ki*errsum + kd*derror; 

   

  if(pid>0){ 

    if(pid>900){ 

      pid=1023; 

    } 

    analogWrite(4,pid); 

    analogWrite(5,0); 

  } 

  else{ 

    if(pid<-900){ 
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      pid=-1023; 

    } 

    analogWrite(5,-1*pid); 

    analogWrite(4,0); 

  } 

  Serial.print(pid); 

  Serial.print('\t'); 

  Serial.println(error); 

   

  delay(8); 

 

  Blynk.virtualWrite(8, error); 

  //Blynk.virtualWrite(9, pid); 

 } 
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